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Reminders

* Homework 5: Readings [ Application of ML
— Release: Wed, Mar. 08
— Due: Wed, Mar. 22 at 11:59pm
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Clustering: Motivation [ Applications
Optimization Background

— Coordinate Descent

— Block Coordinate Descent
Clustering

— Inputs and Outputs

— Objective-based Clustering
K-Means

— K-Means Objective

— Computational Complexity

— K-Means Algorithm [ Lloyd’s Method
K-Means Initialization

— Random

— Farthest Point

— K-Means++



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

datapoints.

Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

e Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).
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Applications (Clustering comes up everywhere...)

* Cluster news articles or web pages or search results by topic.
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e C(luster protein sequences by function or genes according to expression
profile.
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Applications (Clustering comes up everywhere...)

* Cluster customers according to purchase history.

e And many many more applications....
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Optimization Background

Whiteboard:

— Coordinate Descent
— Block Coordinate Descent



Clustering

Whiteboard:

— Inputs and Outputs
— Objective-based Clustering



K-Means

Whiteboard:
— K-Means Objective
— Computational Complexity
— K-Means Algorithm / Lloyd’s Method



K-Means Initialization

Whiteboard:
— Random
— Furthest Traversal
— K-Means++



Lloyd’s method: Random Initialization
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Lloyd’s method: Random Initialization

Example: Given a set of datapoints

O
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Lloyd’s method: Random Initialization

Select initial centers at random

O
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Lloyd’s method: Random Initialization

Assign each point to its nearest center

™
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Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering
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Lloyd’s method: Random Initialization

Assign each point to its nearest center
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Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering
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Lloyd’s method: Random Initialization

Assign each point to its nearest center
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Lloyd’s method: Random Initialization

Recompute optimal centers given a fixed clustering

Get a good quality solution in this example.
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Lloyd’s method: Performance

It always converges, but it may converge at a local optimum that is
different from the global optimum, and in fact could be arbitrarily

worse in terms of its score.
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Lloyd’s method: Performance

Local optimum: every point is assigned to its nearest center and
every center is the mean value of its points.
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Lloyd’s method: Performance

It is arbitrarily worse than optimum solution.... g
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Lloyd’s method: Performance
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This bad performance, can happen

even with well separated Gaussian

clusters.
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Lloyd’s method: Performance

This bad performance, can
happen even with well

separated Gaussian clusters.

Some Gaussian are
combined..... -
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Lloyd’s method: Performance

* If we do random initialization, as k increases, it becomes more likely

we won’t have perfectly picked one center per Gaussian in our

initialization (so Lloyd’s method will output a bad solution).

* For k equal-sized Gaussians, Pr[each initial centerisin a

. . k! 1
different Gaussian] = - ~ —

* Becomes unlikely as k gets large.
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Another Initialization Idea: Furthest Point

Heuristic

Choose ¢4 arbitrarily (or at random).
e Forj=2, ..,k
* Pick ¢; among datapoints x1,x, ..., x" that is farthest

from previously chosen ¢4, €3, ..., €j_1

Fixes the Gaussian problem. But it can be thrown off by

outliers....
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Furthest point heuristic does well on previous

example
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Furthest point initialization heuristic sensitive

to outliers

Assume k=3
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Furthest point initialization heuristic sensitive

to outliers

Assume k=3
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K-means++ Initialization: D% sampling [avo;]

Interpolate between random and furthest point initialization

Let D(x) be the distance between a point x and its nearest center.
Chose the next center proportional to D*(x).

* Choose ¢4 at random.

* Forj=2,..,k

* Pick ¢jamong x1,x2, ..., x™ according to the distribution

Pr(q = x) o@, I~ ¢[[> b2

Theorem: K-means++ always attains an O(log k) approximation to optimal
k-means solution in expectation.

Running Lloyd’s can only further improve the cost.
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K-means++ Idea: D sampling

* Interpolate between random and furthest point initialization

* Let D(x) be the distance between a point x and its nearest center.
Chose the next center proportional to D% (x).

* «a = 0,random sampling

* a =09, furthest pOint (Side note: it actually works well for k-center)

e a =2, kmeans++
Side note: @ = 1, works well for k-median
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K-means ++ Fix
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K-means++/ Lloyd’s Running Time

* K-means ++ initialization: O(nd) and one pass over data to select
next center. So O(nkd) time in total.

* Lloyd’s method

Repeat until there is no change in the cost. Each round takes time

Foreachj: Cj «<{x € S whose closest center is ¢;} O(nkd),

For each j: ¢; «~mean of C;

* Exponential # of rounds in the worst case [AVo7].

Expected polynomial time in the smoothed analysis (non worst-case)
model!

Slide courtesy of Nina Balcan



K-means++/ Lloyd’s Summary

e Running Lloyd’s can only further improve the cost.

Exponential # of rounds in the worst case [AVo7].

Expected polynomial time in the smoothed analysis model!

* Does wellin practice.

K-means++ always attains an O(log k) approximation to optimal k-
means solution in expectation.
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What value of k???

* Heuristic: Find large gap between k -1-means cost and k-
means cost.

* Hold-out validation/cross-validation on auxiliary task (e.g.,
supervised learning task).

* Try hierarchical clustering.
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