

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Learning Theory

Learning Theory Readings:

Murphy --

Bishop --

HTF --

Mitchell 7

Matt Gormley Lecture 13 March 1, 2016

Reminders

- Homework 4: Perceptron / Kernels / SVM
 - Release: Wed, Feb. 22
 - Due: Fri, Mar. 03 at 11:59pm

9 days for HW4

- Midterm Exam (Evening Exam)
 - Tue, Mar. 07 at 7:00pm 9:30pm
 - See Piazza for details about location

Outline

- Generative vs. Discriminative Modeling
- Bayes Optimal Classifier
 - Loss function, Expected Loss
 - Bayes Error
 - Bayes Optimal
- Consistency of MLE
 - Consistency
 - Almost Sure Convergence of MLE

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

Whiteboard

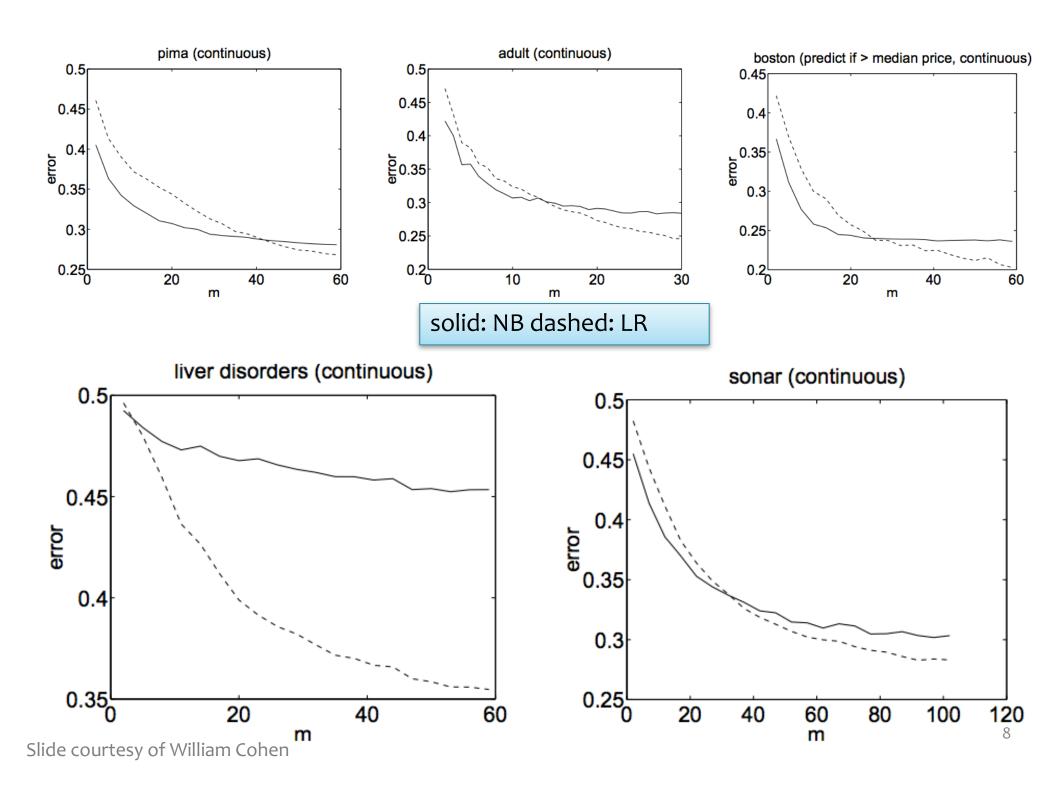
- Contrast: To model p(x) or not to model p(x)?

Finite Sample Analysis (Ng & Jordan, 2002)

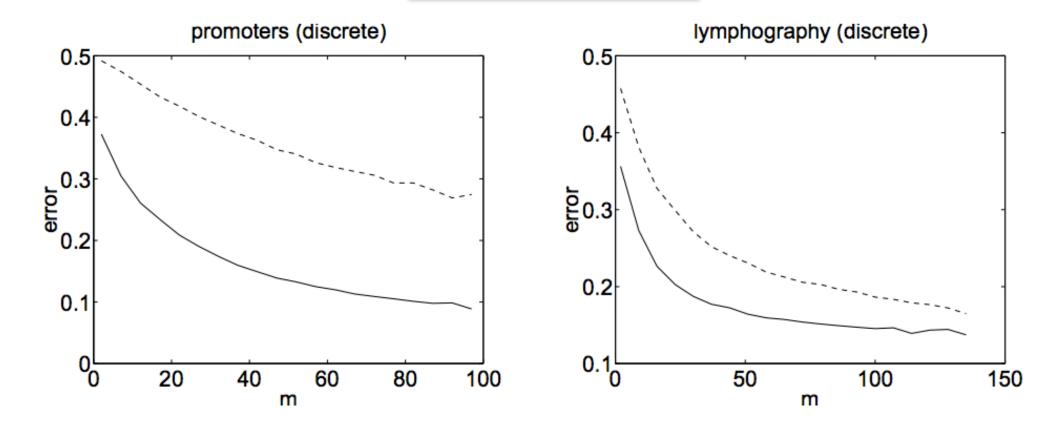
[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes



solid: NB dashed: LR



Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled -> Closed form solution for MLE

Logistic Regression:

Parameters are coupled \rightarrow No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities \rightarrow Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.

LEARNING THEORY

Outline

- Generative vs. Discriminative Modeling
- Bayes Optimal Classifier
 - Loss function, Expected Loss
 - Bayes Error
 - Bayes Optimal
- Consistency of MLE
 - Consistency
 - Almost Sure Convergence of MLE

Questions For Today

Given a probability distribution, how do we construct the optimal classifier?
 (Bayes Optimal Classifier)

 Given data, what guarantees do we have about the MLE parameters? (Consistency of MLE)

Bayes Optimal Classifier

Whiteboard:

- Loss function, Expected Loss
- Bayes Error
- Bayes Optimal

Questions For Today

Given a probability distribution, how do we construct the optimal classifier?
 (Bayes Optimal Classifier)

 Given data, what guarantees do we have about the MLE parameters? (Consistency of MLE)

Consistency of MLE

Whiteboard:

- Consistency
- Almost Sure Convergence of MLE

MIDTERM EXAM LOGISTICS

Midterm Exam

Logistics

- Evening ExamTue, Mar. 07 at 7:00pm 9:30pm
- 8-9 Sections
- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - Short answers
 - Interpreting figures
- No electronic devices
- You are allowed to bring one 8½ x 11 sheet of notes (front and back)

Midterm Exam

How to Prepare

- Attend the midterm review session:
 Thu, March 2 at 6:30pm (PH 100)
- Attend the midterm review lecture
 Mon, March 6 (in-class)
- Review prior year's exam and solutions (we'll post them)
- Review this year's homework problems

Midterm Exam

Advice (for during the exam)

- Solve the easy problems first
 (e.g. multiple choice before derivations)
 - if a problem seems extremely complicated you're likely missing something
- Don't leave any answer blank!
- If you make an assumption, write it down
- If you look at a question and don't know the answer:
 - we probably haven't told you the answer
 - but we've told you enough to work it out
 - imagine arguing for some answer and see if you like it

Topics for Midterm

- Foundations
 - Probability
 - MLE, MAP
 - Optimization
- Classifiers
 - KNN
 - Naïve Bayes
 - Logistic Regression
 - Perceptron
 - SVM

- Regression
 - Linear Regression
- Important Concepts
 - Kernels
 - Regularization and Overfitting
 - Experimental Design