10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Perceptron
==

Kernels

Perceptron Readings: Kernel Readings:

Murphy 8.5.4 Murphy 14.1 - 14.2.4 Matt Gormley
Bishop 4.1.7 Bishop 6.1- 6.2

e e Lecture 11

Mitchell 4.4.0 Mitchell -- February 22, 2016

Reminders

* Homework 3: Linear [Logistic Regression
— Release: Mon, Feb. 13
— Due: Wed, Feb. 22 at 11:59pm

* Course Survey [5 pts]

— due Fri, Feb 24 at 11:59pm
 Homework 4: Perceptron [Kernels | SVM

— Release: Wed, Feb. 22
New due date
— Due: Fri, Mar. 03 at 11:59pm (9 days for HW4)

Outline

* Perceptron

— Online Learning

— Perceptron Algorithm

— Margin Definitions

— Perceptron Mistake Bound
* Kernels

— Kernel Perceptron

— Kernel as a dot product This Lecture

— Gram matrix

— Examples: Polynomial, RBF

* Support Vector Machine (SVM)

Last Lecture

PERCEPTRON

dimenzion 3

.............

Background:

Q

>

Background: Hyperplanes%

Hyperplane (Definition 1):
H={x:w'x=>b}
Hyperplane (Definition 2):
H={x:wx=0
and x, = 1}

Half-spaces:
HT ={x:w'x>0and x, =1}

H ={x:w'x<0and x, =1}

Online Learning

Fori=1,2,3,...:
* Receive an unlabeled instance x®
* Predicty’ = h(x(")

* Receive true label y(
Check for correctness (y’ == y(i))

Goal:
e Minimize the number of mistakes

Online Learning: Motivation

Examples

1. Email classification (distribution of both
spam and regular mail changes over time,
but the target function stays fixed - last
year's spam still looks like spam).

2. Recommendation systems. Recommending
movies, etc.

3. Predicting whether a user will be interested
in a new news article or not.

4. Ad placementin a new market.

Slide from Nina Balcan

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex € R* andy € {+1, -1}

Prediction: Output determined by hyperplane.
Yy = he (X) — Sigl”l(HTX) sign(a) = {1_1 ifa >0

otherwise
Learning: Iterative procedure:
* while not converged
* receive next example (x(, y())
 predicty’ = h(x®)
* if positive mistake: add x(V to parameters
* if negative mistake: subtract x(from parameters

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex € R* andy € {+1, -1}

Prediction: Output determined by hyperplane.
J = ho(x) =sign(@'x) sgnlw)= {1_,1 fa>0

otherwise
Learning:

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x(1), y(), (x(2) 42 ...}
2 00 > Initialize parameters
3 fori € {1,2,...} do > For each example
4 i + sign(67x®) > Predict
5
6
7

if § # y(®) then > If mistake
0 — 0 + yIx® > Update parameters

return 6

Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) + \\‘\‘j;‘
1L+ X |
(—1,0) —
(-1,-2)— X .
(1,—-1) +

Algorithm:

6, = (0,0)
0, =0, —(-12) =(1,-2)

= Set t=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff 8, - x = 0.
= On a mistake, update as follows: 0; =0, + (11 =(2-1)
e Mistake on positive, update 6,,; « 6; + x 0,=06;—(—1,-2)=(31)
e Mistake on negative, update ;1 < 6, — x

Slide adapted from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane 6 . x = o (or the negative if on wrong side)

Margin of positive example x;

Margin of negative example x,

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(9), y()I N,

Suppose:
1. Finite size inputs: ||2V|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and

Yy (0" - x D) > v, Vi
Then: The number of mistakes made by the Perceptron

o

algorithm on this dataset is N

k< (R/v)°

Analysis: Perceptron

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
1. Finitesizeinputs: ||| < R !
2. Linearly separable data: 30 s.t. ||0*||] = 1and |

\

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1),y(M), (x() 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y(D (0% . x()) < 0 then > If mistake
5 g+ o gk) 4 (D)% (@) > Update parameters
6 E+—k+1
7 return 6

Analysis: Perceptron

Whiteboard:
Proof of Perceptron Mistake Bound

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON(D = {(x1), y), ... (xV) 4V
2 60 > Initialize parameters
3 while not converged do

4 fori e {1,2,..., N} do > For each example
5: § « sign(67 x() > Predict
6

7

8

if § # y(*) then > If mistake
0 «— 6+ yIx) > Update parameters

return 6

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived by applying
Stochastic Gradient Descent (SGD) to minimize a so-called Hinge Loss

on a linear separator

Extensions of Perceptron

* Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple

* Structured Perceptron

— Basic idea can also be applied when y ranges
over an exponentially large set

— Mistake bound does not depend on the size of
that set

Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (he (x(i)) B y(i))
he(x) = p(y|z)
2. Least Mean Squares 5. 1
Or < 01 + . :
ho(x) = 87x TP T 4 exp A(he (x®) — y®)
3. Perceptron 6. _ , .
(1)) _ (D). (1)
he(x) = sign(HTX) O < Ok + A(ho (X)) — 4™y,
A.1=5,2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6) 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6

29

Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake
is made, add [subtract the features

For linearly separable and inseparable data,
we can bound the number of mistakes
(geometric argument)

Extensions support nonlinear separators and
structured prediction

KERNELS

Kernels: Motivation

Most real-world problems exhibit data that is
not linearly separable.

Example: pixel representation for Facial Recognition:

Q: When your data is not linearly separable,
now can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Kernels: Motivation

* Motivation #1: Inefficient Features

— Non-linearly separable data requires high
dimensional representation

— Might be prohibitively expensive to compute or
store

* Motivation #2: Memory-based Methods

— k-Nearest Neighbors (KNN) for facial recognition
allows a distance metric between images - no
need to worry about linearity restriction at all

Kernels

Whiteboard

— Kernel Perceptron

— Kernel as a dot product

— Gram matrix

— Examples: RBF kernel, string kernel

Kernel Methods

Key idea:
1. Rewrite the algorithm so that we only work with dot products x'z
of feature vectors

2. Replace the dot products x'z with a kernel function k(x, z)

The kernel k(x,z) can be any legal definition of a dot product:
k(x, z) = @(x) Tep(z) for any function ¢: X = RP

So we only compute the ¢ dot product implicitly

This “kernel trick” can be applied to many algorithms:
— classification: perceptron, SVM, ...
— regression: ridge regression, ...
— clustering: k-means, ...

35

Kernel Methods

Q: These are just non-linear features, right?
A: Yes, but...

Q: Can’t we just compute the feature
transformation ¢ explicitly?

A: That depends...

: So, why all the hype about the kernel trick?

Because the explicit features might either
be prohibitively expensive to compute or
infinite length vectors

> 0O

Example: Polynomial Kernel

For n=2, d=2, the kernel K(x,z) = (x - z)¢ corresponds to

(I): Rz - R3: (X1'X2) — CI)(X) — (XerZJ \/_X1X2)
Px) - p(2) = (X1»X2»‘/_X1X2) (Z1»Zz:\/_2122)

Original space

= (X121 +X32,)* = (x+ 2)* =

X A X2
X X
X
X __L._ X
X X/// O o \\\ X
,I (0} o) o \ \xl
\ ,' -
\ O o, x
X ~_ O -
X X X
X
X X X Z3

Slide from Nina Balcan

K(x,z)

d-space

37

Example: Polynomial Kernel

Feature space can grow really large and really quickly....

Crucial to think of ¢ as implicit, not explicit!ll!

Polynomial kernel degreee d, k(x,z) = (x"2)? = ¢p(x) - p(2)

d 2
- X1, X1 X2 . Xg, X1 X2 ... Xg—1

- Total number of such feature is
(d+n—1) _(@d+n-1)
d d'(n—1)!
- d = 6,n =100, there are 1.6 billion terms

number of monomial terms

] L "
11111111111

0O(n) computation!

k(x,z) = (x"2)* = ¢p(x) - $p(2)

Slide from Nina Balcan

number of input dimensions

Kernel Examples

Side Note: The feature space might not be unique!

Explicit representation #1:
¢:R? - R?, (x1,%5) = P(x) = (X1;X2»\/_X1X2)
dx) - $(z) = (X1»X2:\/_X1X2) (21, 25,V22,2,)
= (X121 +X223)* = (x- 2)* = K(x,2)

Explicit representation #2:
$:R? = R*, (x1,%3) = P(x) = (X{,X3,X1Xp, XpX1)

¢x) - d(2) = (X%»X%:X1X2:X2X1) ' (Z%»Z%»Z1ZZ;ZZZ1)
= (x-2)* =K(x,2)

These two different feature representations correspond to the same
kernel function!

Slide from Nina Balcan

Kernel Function Feature Space
(implicit dot product) (explicit dot product)

Linear

Polynomial (v1)

Polynomial (v2)

Gaussian

Hyperbolic
Tangent
(Sigmoid)
Kernel

Kernel Examples

K(x,z) =x'z

K(x,z) = (x'z+ 1)

|x — z||5
202

K(x,z) = tanh(ax’z + ¢)

K(x,z) = exp(—

)

Same as original input
space

All polynomials of degree
d

All polynomials up to
degreed

Infinite dimensional space
(With SVM, this is

equivalent to a 2-layer
neural network)

40

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.010000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

41

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.010000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

42

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.020000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

43

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.040000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

44

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.080000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

45

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.160000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

46

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.320000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

47

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=0.640000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

48

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=1.280000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

49

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=2.560000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

50

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=5.120000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

51

RBF Kernel Example

Classification with SVM (kernel=rbf, gamma=10.000000)
4 -

| | | | |
-4 _2 0 2 4

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

52

RBF Kernel Example

KNN vs. SVM

Classification with KNN (k = 100, weights = 'uniform’') Classification with SVM (kernel=rbf, gamma=0.001000)

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

53

RBF Kernel Example

KNN vs. SVM

Classification with KNN (k = 16, weights = 'uniform’)

Classification with SVM (kernel=rbf, gamma=0.040000),

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

54

RBF Kernel Example

KNN vs. SVM

, Classification with KNN (k = 4, weights = 'uniform’) Classification with SVM (kernel=rbf, gamma=1.280000)

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

55

RBF Kernel Example

KNN vs. SVM

Classification with KNN (k = 1, weights = 'uniform’) Classification with SVM (kernel=rbf, gamma=10.000000)

RBF Kernel: K (x(V) x()) = exp(—~|[x® — x||2)

56

Kernels: Discussion

« If all computations involving instances are in terms
of inner products then:

= Conceptually, work in a very high diml space and the alg's
performance depends only on linear separability in that
extended space.

= Computationally, only need to modify the algo by replacing
each x -z with a K(x, 2).

How to choose a kernel:

« Kernels often encode domain knowledge (e.g., string kernels)

+ Use Cross-Validation to choose the parameters, e.g., o for
Gaussian Kernel K(xz) = exp |2l

202

« Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El Ghaoui-
Jordan'04]

Slide from Nina Balcan

