

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Perceptron

Perceptron Readings:

Murphy 8.5.4 Bishop 4.1.7 HTF --

Mitchell 4.4.0

Kernel Readings:

Murphy 14.1 – 14.2.4 Bishop 6.1 – 6.2 HTF --Mitchell -- Matt Gormley Lecture 11 February 22, 2016

Reminders

- Homework 3: Linear / Logistic Regression
 - Release: Mon, Feb. 13
 - Due: Wed, Feb. 22 at 11:59pm
- Course Survey [5 pts]
 - due Fri, Feb 24 at 11:59pm
- Homework 4: Perceptron / Kernels / SVM
 - Release: Wed, Feb. 22
 - Due: Fri, Mar. 03 at 11:59pm

New due date (9 days for HW4)

Outline

Perceptron

- Online Learning
- Perceptron Algorithm
- Margin Definitions
- Perceptron Mistake Bound

Kernels

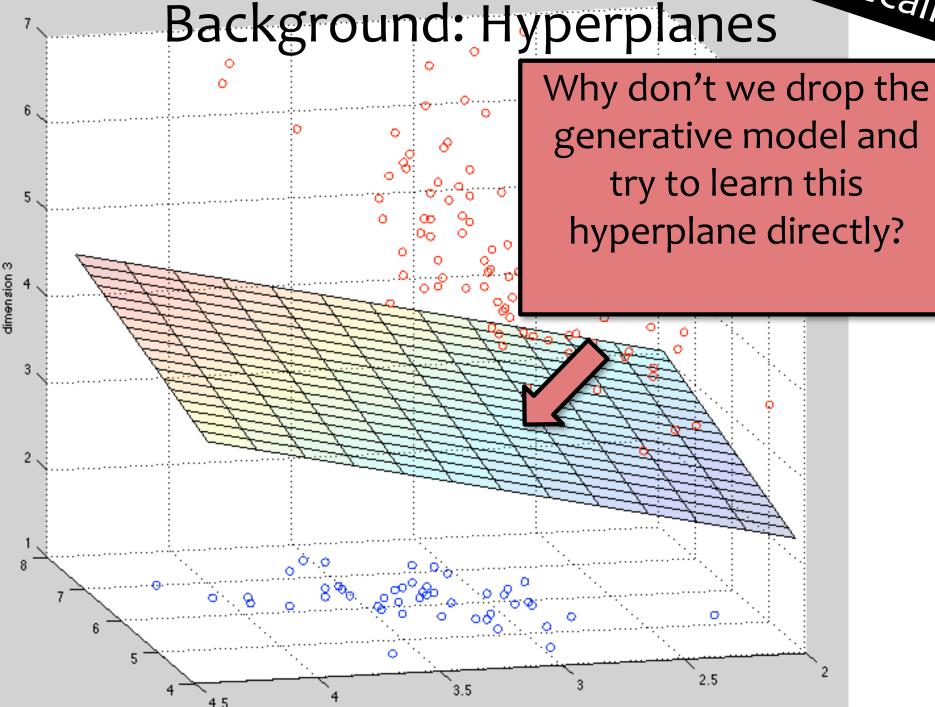
- Kernel Perceptron
- Kernel as a dot product
- Gram matrix
- Examples: Polynomial, RBF

Support Vector Machine (SVM)

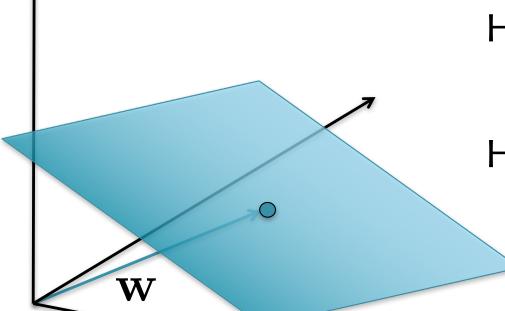
Last Lecture

This Lecture

PERCEPTRON



Background: Hyperplanes



Hyperplane (Definition 1):

$$\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} = 0$$
and $\mathbf{x}_0 = 1 \}$

Half-spaces:

$$\mathcal{H}^+ = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} > 0 \text{ and } \mathbf{x}_0 = 1 \}$$

$$\mathcal{H}^- = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} < 0 \text{ and } \mathbf{x}_0 = 1\}$$

Directly modeling the hyperplane would use a decision function:

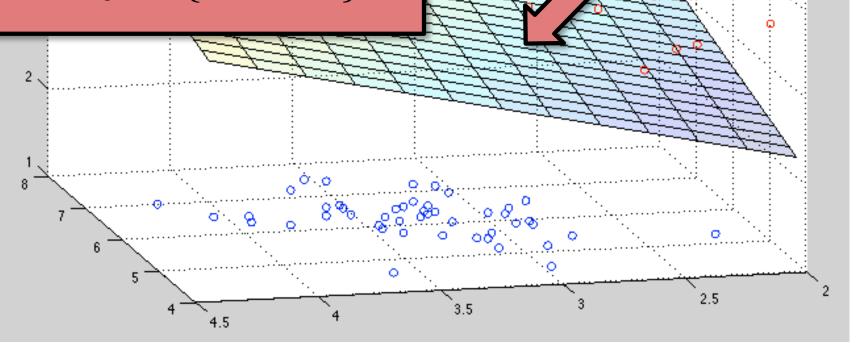
$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

d: Hyperplanes

Why don't we drop the generative model and try to learn this hyperplane directly?



Online Learning

For
$$i = 1, 2, 3, ...$$
:

- Receive an unlabeled instance x⁽ⁱ⁾
- Predict y' = h(x⁽ⁱ⁾)
- Receive true label y⁽ⁱ⁾
 Check for correctness (y' == y⁽ⁱ⁾)

Goal:

Minimize the number of mistakes

Online Learning: Motivation

Examples

- 1. Email classification (distribution of both spam and regular mail changes over time, but the target function stays fixed last year's spam still looks like spam).
- 2. Recommendation systems. Recommending movies, etc.
- Predicting whether a user will be interested in a new news article or not.
- 4. Ad placement in a new market.

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs

 $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$ are discrete.

where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = \mathrm{sign}(m{ heta}^T\mathbf{x})$$
 sign(a) = $\begin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$

$$\operatorname{sign}(a) = egin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$$

Learning: Iterative procedure:

- while not converged
 - receive next example (x⁽ⁱ⁾, y⁽ⁱ⁾)
 - predict y' = h(x⁽ⁱ⁾)
 - **if** positive mistake: **add x**⁽ⁱ⁾ to parameters
 - **if** negative mistake: **subtract x**⁽ⁱ⁾ from parameters

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$ are discrete.

where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = \mathrm{sign}(m{ heta}^T\mathbf{x})$$
 sign(a) = $\begin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$

$$\operatorname{sign}(a) = egin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$$

Learning:

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure PERCEPTRON(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
 2: \theta \leftarrow 0
                                                                                               ▷ Initialize parameters
3: for i \in \{1, 2, \ldots\} do 
4: \hat{y} \leftarrow \operatorname{sign}(\boldsymbol{\theta}^T\mathbf{x}^{(i)})
                                                                                                     ⊳ For each example
                                                                                                                            ▶ Predict
5: if \hat{y} \neq y^{(i)} then
6: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)}
                                                                                                                      ▶ If mistake
                     \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}

    □ Update parameters

             return \theta
 7:
```

Perceptron Algorithm: Example

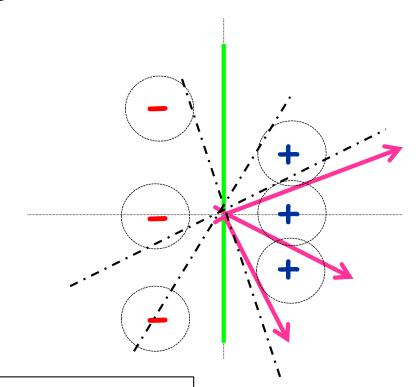
Example:
$$(-1,2) - \times (1,0) + \checkmark$$

$$(1,1) + X$$

$$(-1,0)$$
 – \checkmark

$$(-1, -2) - X$$

$$(1,-1) + \checkmark$$



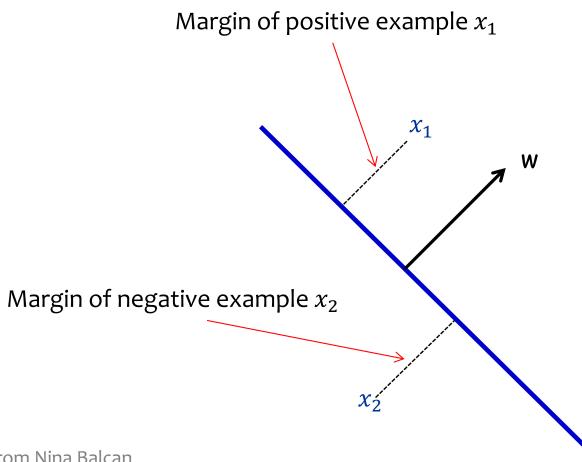
Algorithm:

- Set t=1, start with all-zeroes weight vector w_1 .
- Given example x, predict positive iff $\theta_t \cdot x \ge 0$.
- On a mistake, update as follows:
 - Mistake on positive, update $\theta_{t+1} \leftarrow \theta_t + x$
 - Mistake on negative, update $\theta_{t+1} \leftarrow \theta_t x$

$$\theta_1 = (0,0)$$
 $\theta_2 = \theta_1 - (-1,2) = (1,-2)$
 $\theta_3 = \theta_2 + (1,1) = (2,-1)$
 $\theta_4 = \theta_3 - (-1,-2) = (3,1)$

Geometric Margin

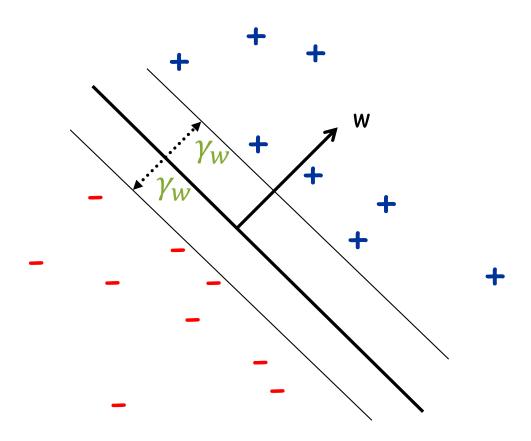
Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $\theta \cdot x = 0$ (or the negative if on wrong side)



Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.



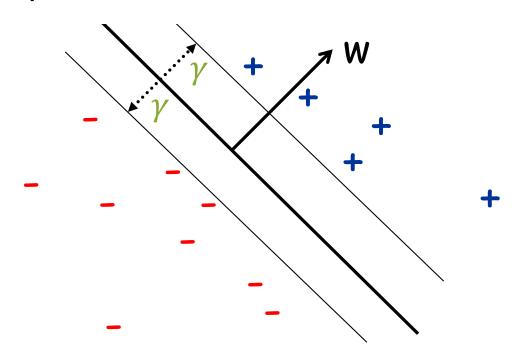
Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.

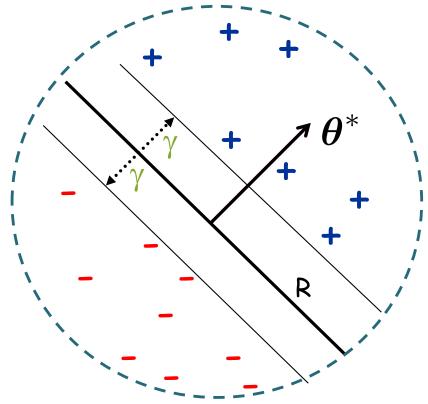


Slide from Nina Balcan

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)



Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron

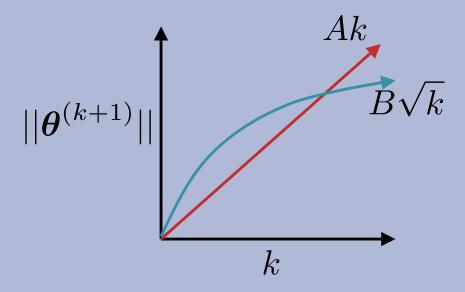
algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$|Ak \le ||\boldsymbol{\theta}^{(k+1)}|| \le B\sqrt{k}$$



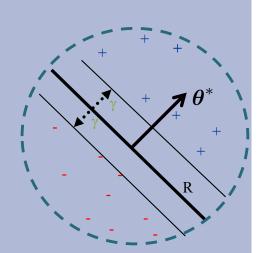
Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \pmb{\theta}^*$ s.t. $||\pmb{\theta}^*|| = 1$ and $y^{(i)}(\pmb{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is



$$k \le (R/\gamma)^2$$

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
                                                                              ▷ Initialize parameters
          \theta \leftarrow \mathbf{0}, k = 1
       for i \in \{1, 2, ...\} do
                                                                                   ▷ For each example
3:
                 if y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0 then
                                                                                                 ▶ If mistake
4:
                       \boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}
                                                                                ▷ Update parameters
5:
                      k \leftarrow k + 1
6:
           return \theta
7:
```

Whiteboard: Proof of Perceptron Mistake Bound

Proof of Perceptron Mistake Bound:

Part 1: for some A,
$$Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \ge k\gamma$$

by induction on k since $\theta^{(1)} = \mathbf{0}$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \ge k\gamma$$

since
$$||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$$
 and $||\theta^*|| = 1$

Cauchy-Schwartz inequality

Proof of Perceptron Mistake Bound:

Part 2: for some B,
$$||\boldsymbol{\theta}^{(k+1)}|| \leq B\sqrt{k}$$

$$||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$$

by Perceptron algorithm update

$$= ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2||\mathbf{x}^{(i)}||^2 + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$$

$$\leq ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2 ||\mathbf{x}^{(i)}||^2$$

since kth mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$

$$= ||\boldsymbol{\theta}^{(k)}||^2 + R^2$$

since $(y^{(i)})^2 ||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}||^2 \le kR^2$$

by induction on k since $(\theta^{(1)})^2 = 0$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \leq \sqrt{k}R$$

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\})
          \theta \leftarrow 0
                                                                       ▷ Initialize parameters
2:
          while not converged do
3:
                 for i \in \{1, 2, \dots, N\} do
                                                                            ▷ For each example
4:
                       \hat{y} \leftarrow \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(i)})
                                                                                               ▶ Predict
5:
                       if \hat{y} \neq y^{(i)} then
                                                                                          ▶ If mistake
6:
                             \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}

    □ Update parameters

7:
           return \theta
8:
```

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Discussion:

The Batch Perceptron Algorithm can be derived by applying **Stochastic Gradient Descent (SGD)** to minimize a so-called **Hinge Loss** on a linear separator

Extensions of Perceptron

Kernel Perceptron

- Choose a kernel K(x', x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple

Structured Perceptron

- Basic idea can also be applied when y ranges over an exponentially large set
- Mistake bound does not depend on the size of that set

Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = p(y|x)$$

2. Least Mean Squares

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$$

3. Perceptron

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

$$\theta_k \leftarrow \theta_k + (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})$$

$$\theta_k \leftarrow \theta_k + \frac{1}{1 + \exp \lambda (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})}$$

$$\theta_k \leftarrow \theta_k + \lambda (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}) x_k^{(i)}$$

Summary: Perceptron

- Perceptron is a linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

KERNELS

Kernels: Motivation

Most real-world problems exhibit data that is not linearly separable.

Example: pixel representation for Facial Recognition:

Q: When your data is **not linearly separable**, how can you still use a linear classifier?

A: Preprocess the data to produce **nonlinear features**

Kernels: Motivation

- Motivation #1: Inefficient Features
 - Non-linearly separable data requires high dimensional representation
 - Might be prohibitively expensive to compute or store
- Motivation #2: Memory-based Methods
 - k-Nearest Neighbors (KNN) for facial recognition allows a distance metric between images -- no need to worry about linearity restriction at all

Kernels

Whiteboard

- Kernel Perceptron
- Kernel as a dot product
- Gram matrix
- Examples: RBF kernel, string kernel

Kernel Methods

Key idea:

- 1. Rewrite the algorithm so that we only work with **dot products** x^Tz of feature vectors
- 2. Replace the **dot products** x^Tz with a **kernel function** k(x, z)
- The kernel k(x,z) can be any legal definition of a dot product:

$$k(x, z) = \varphi(x)^{T}\varphi(z)$$
 for any function $\varphi: \mathcal{X} \rightarrow \mathbf{R}^{D}$

So we only compute the φ dot product **implicitly**

- This "kernel trick" can be applied to many algorithms:
 - classification: perceptron, SVM, ...
 - regression: ridge regression, ...
 - clustering: k-means, ...

Kernel Methods

Q: These are just non-linear features, right?

A: Yes, but...

Q: Can't we just compute the feature transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?

A: Because the explicit features might either be prohibitively expensive to compute or infinite length vectors

Example: Polynomial Kernel

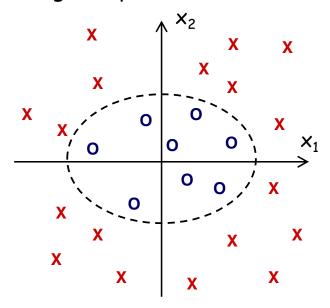
For n=2, d=2, the kernel $K(x,z) = (x \cdot z)^d$ corresponds to

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3, (x_1, x_2) \to \Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

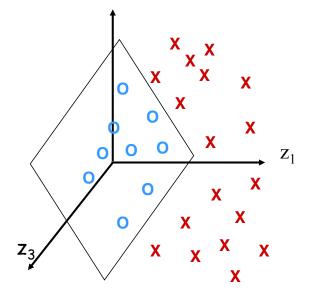
$$\phi(x) \cdot \phi(z) = (x_1^2, x_2^2, \sqrt{2}x_1x_2) \cdot (z_1^2, z_2^2, \sqrt{2}z_1z_2)$$

$$= (x_1z_1 + x_2z_2)^2 = (x \cdot z)^2 = K(x, z)$$

Original space



Ф-ѕрасе



Example: Polynomial Kernel

Feature space can grow really large and really quickly....

Crucial to think of ϕ as implicit, not explicit!!!!

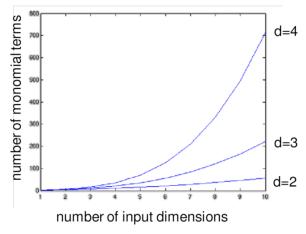
Polynomial kernel degreee d, $k(x,z) = (x^Tz)^d = \phi(x) \cdot \phi(z)$

$$- x_1^d, x_1 x_2 \dots x_d, x_1^2 x_2 \dots x_{d-1}$$

- Total number of such feature is

$${\binom{d+n-1}{d}} = \frac{(d+n-1)!}{d! (n-1)!}$$

- d = 6, n = 100, there are 1.6 billion terms



$$k(x,z) = (x^{\mathsf{T}}z)^d = \phi(x) \cdot \phi(z)$$

Kernel Examples

Side Note: The feature space might not be unique!

Explicit representation #1:

$$\begin{aligned} \Phi \colon R^2 \to R^3, & (x_1, x_2) \to \Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2) \\ \Phi(x) \cdot \Phi(z) &= (x_1^2, x_2^2, \sqrt{2}x_1x_2) \cdot (z_1^2, z_2^2, \sqrt{2}z_1z_2) \\ &= (x_1z_1 + x_2z_2)^2 = (x \cdot z)^2 = K(x, z) \end{aligned}$$

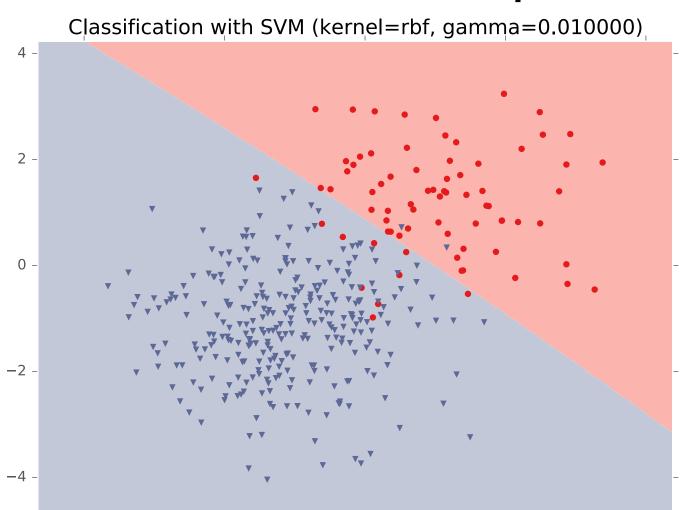
Explicit representation #2:

$$\begin{aligned} \varphi \colon R^2 \to R^4, & (x_1, x_2) \to \Phi(x) = (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \\ \varphi(x) \cdot \varphi(z) &= (x_1^2, x_2^2, x_1 x_2, x_2 x_1) \cdot (z_1^2, z_2^2, z_1 z_2, z_2 z_1) \\ &= (x \cdot z)^2 = K(x, z) \end{aligned}$$

These two different feature representations correspond to the same kernel function!

Kernel Examples

Name	Kernel Function (implicit dot product)	Feature Space (explicit dot product)
Linear	$K(\mathbf{x}, \mathbf{z}) = \mathbf{x}^T \mathbf{z}$	Same as original input space
Polynomial (v1)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^d$	All polynomials of degree d
Polynomial (v2)	$K(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + 1)^d$	All polynomials up to degree d
Gaussian	$K(\mathbf{x}, \mathbf{z}) = \exp(-\frac{ \mathbf{x} - \mathbf{z} _2^2}{2\sigma^2})$	Infinite dimensional space
Hyperbolic Tangent (Sigmoid) Kernel	$K(\mathbf{x}, \mathbf{z}) = \tanh(\alpha \mathbf{x}^T \mathbf{z} + c)$	(With SVM, this is equivalent to a 2-layer neural network)

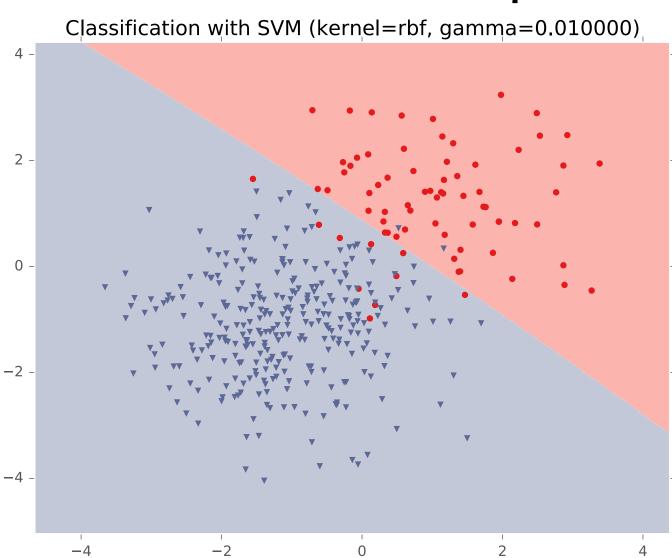


0

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

_ _2

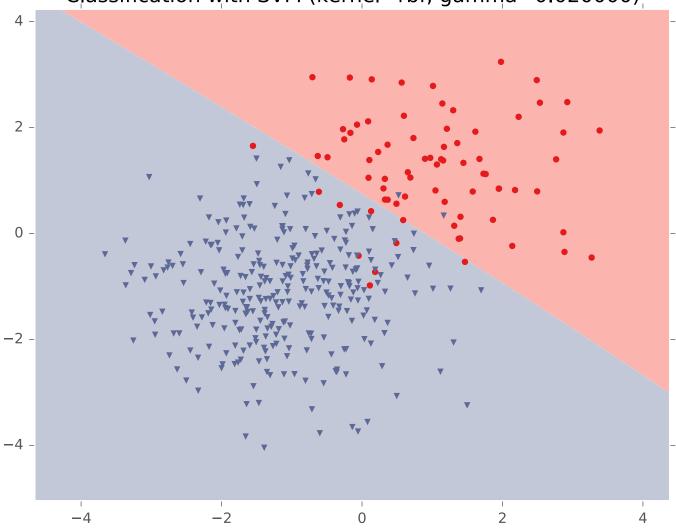
-4



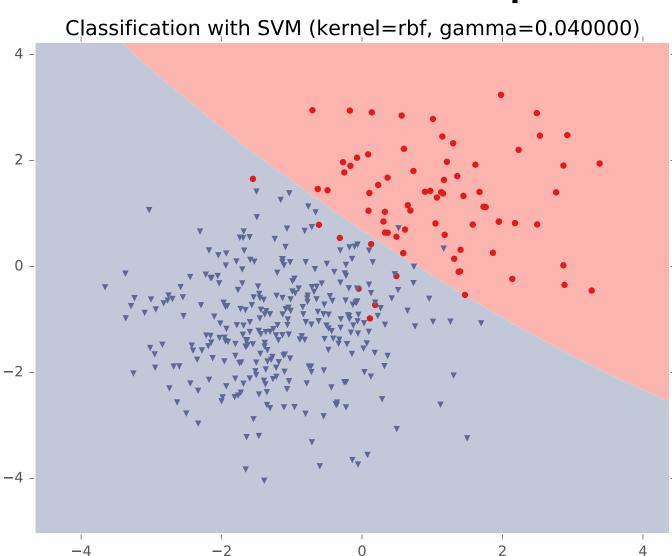
0

RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

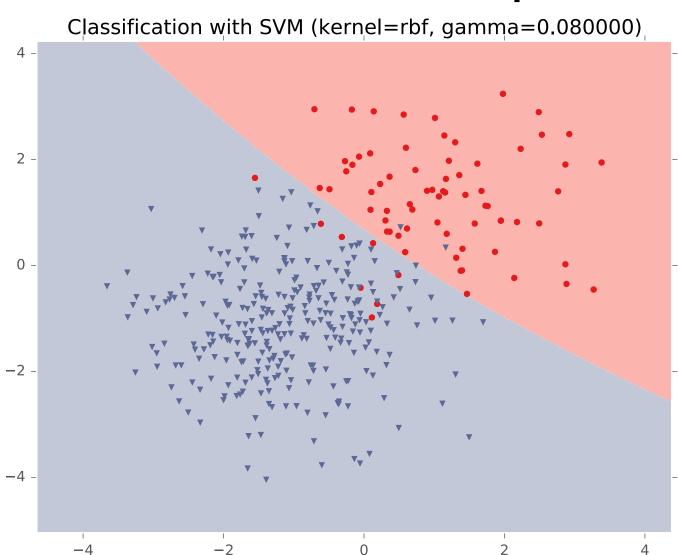
-4



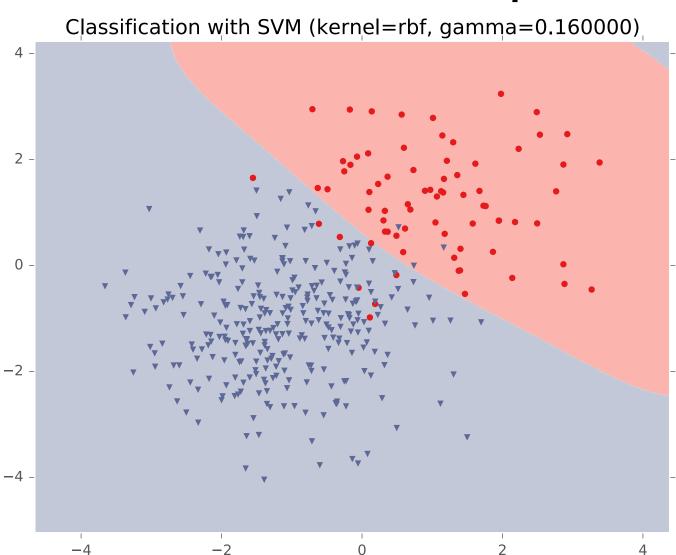
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



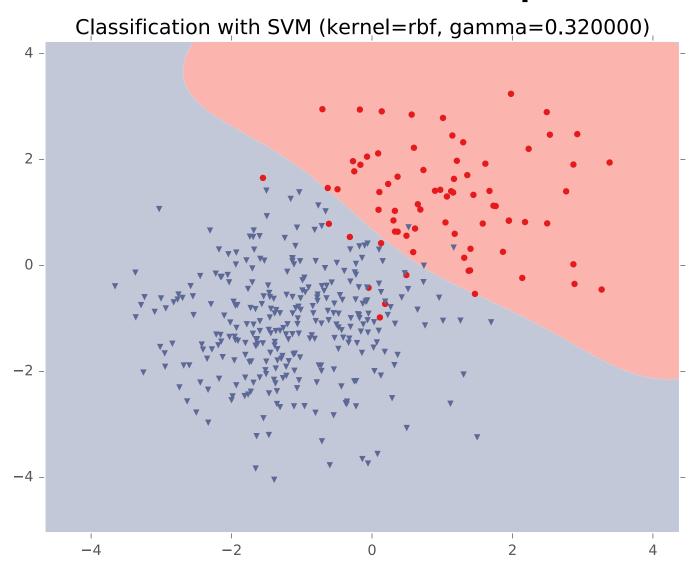
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



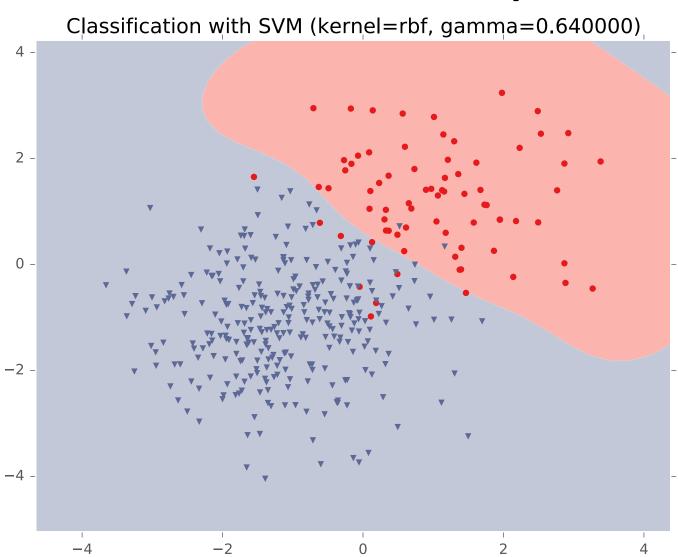
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



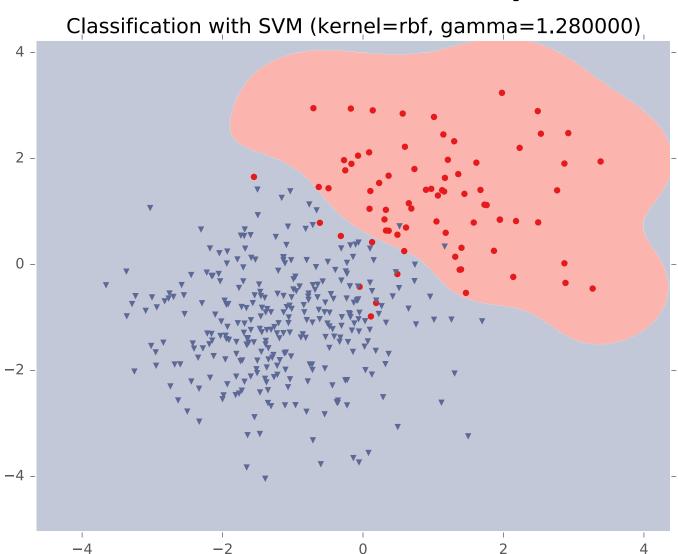
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



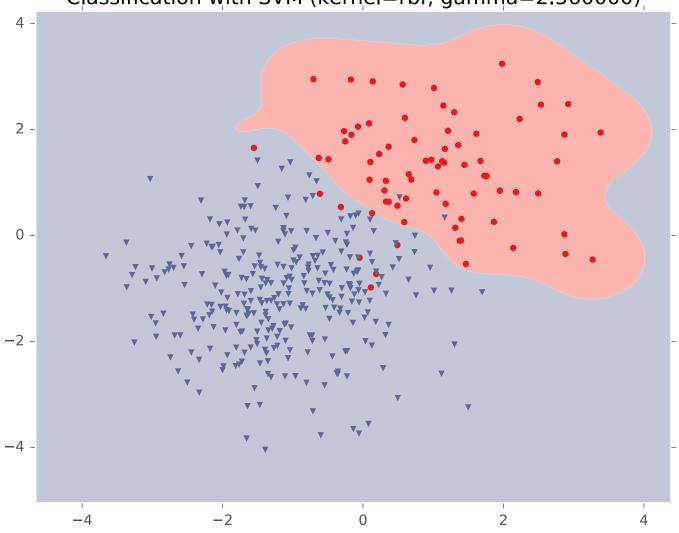
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



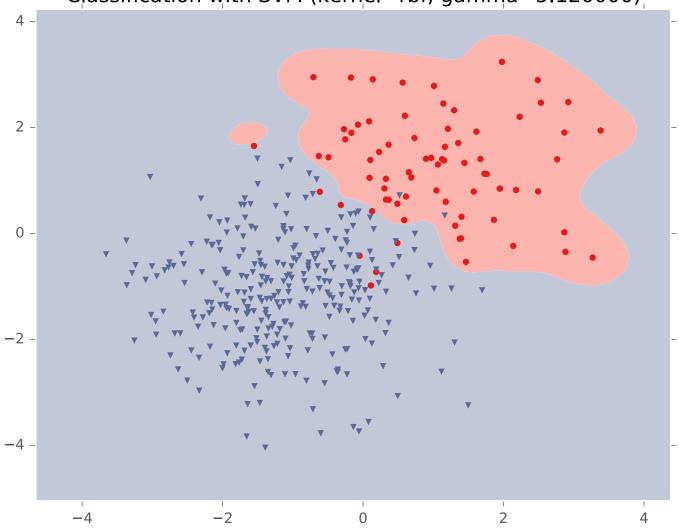
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

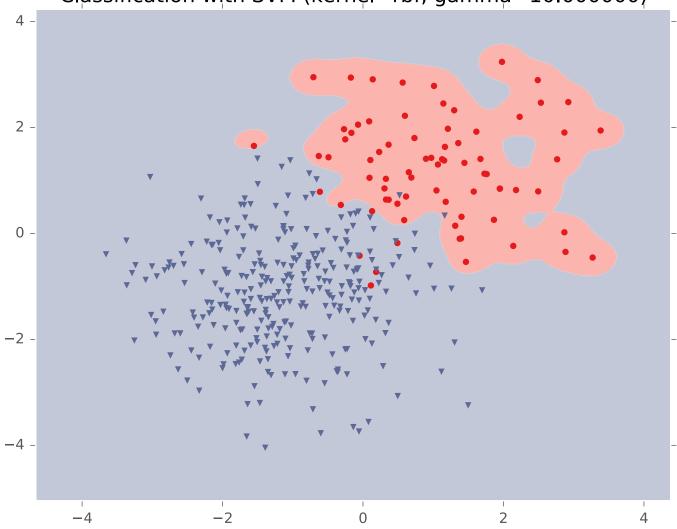


RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

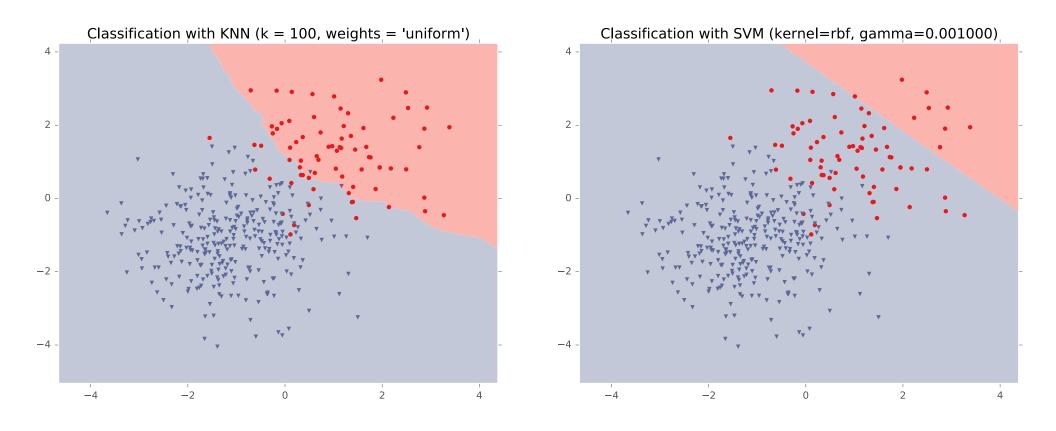


RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

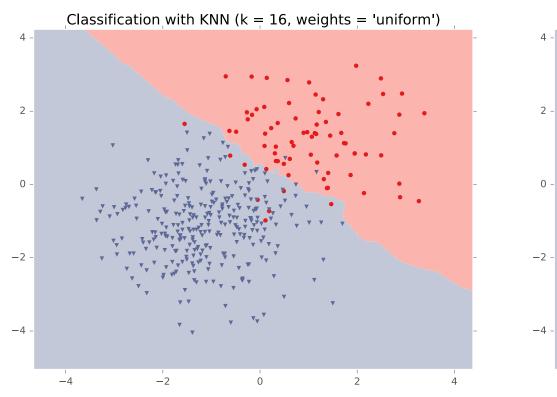
Classification with SVM (kernel=rbf, gamma=10.000000)

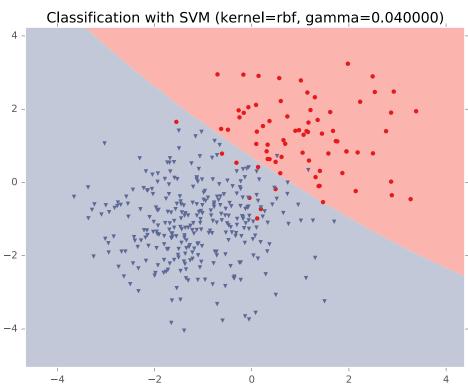


RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

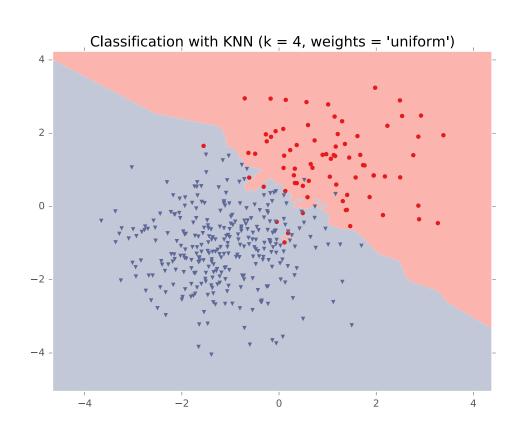


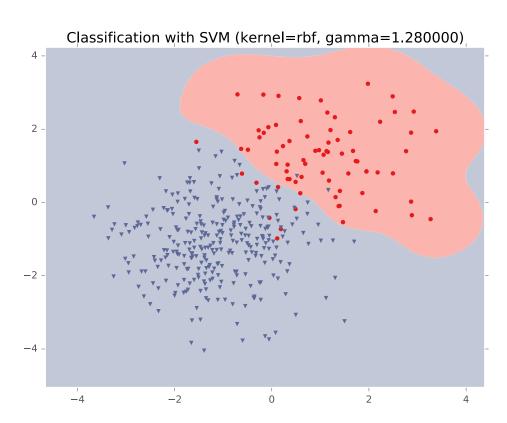
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$



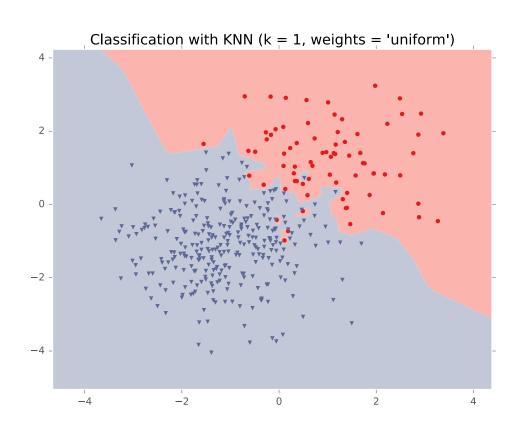


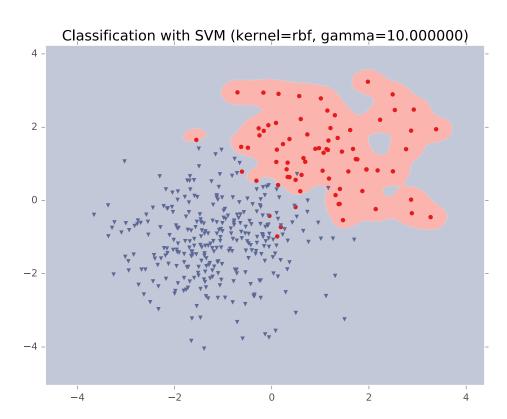
RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$





RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$





RBF Kernel:
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp(-\gamma ||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||_2^2)$$

Kernels: Discussion

- If all computations involving instances are in terms of inner products then:
 - Conceptually, work in a very high diml space and the alg's performance depends only on linear separability in that extended space.
 - Computationally, only need to modify the algo by replacing each $x \cdot z$ with a K(x, z).

How to choose a kernel:

- Kernels often encode domain knowledge (e.g., string kernels)
- Use Cross-Validation to choose the parameters, e.g., σ for Gaussian Kernel $K(x,z)=\exp\left[-\frac{||x-z||^2}{2\,\sigma^2}\right]$
 - Learn a good kernel; e.g., [Lanckriet-Cristianini-Bartlett-El Ghaoui-Jordan'04]