L 10-601 Introduction to Machine Learning

Machine Learning Department

e School of Computer Science

MACHINE LEARNING Carnegie Mellon University
EEEEEEEEEE

%

Regularization
==

Perceptron

Perceptron Readings:

Murphy 8.5.4 Matt Gormley

ﬁi;»:(ip 4.1.7 Lecture 10
Mitchell 4.4.0 February 20, 2016

Reminders

* Homework 3: Linear [Logistic Regression
— Release: Mon, Feb. 13
— Due: Wed, Feb. 22 at 11:59pm

 Homework 4: Perceptron [Kernels | SVM

— Release: Wed, Feb. 22 1 week
— Due: Wed, Mar. 01 at 11:59pm e

* Midterm Exam (Evening Exam)

— Tue, Mar. 07 at 7:00pm - 9:30pm
— See Piazza for details about location

Outline

* Regularization
— Motivation: Overfitting
— L2, L1, Lo Regularization

— Relation between Regularization and MAP
Estimation

* Perceptron
— Online Learning
— Margin Definitions
— Perceptron Algorithm
— Perceptron Mistake Bound

* Generative vs. Discriminative Classifiers

REGULARIZATION

Overfitting %

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:

— KNN (e.g. when k is small)

— Naive Bayes (e.g. without a prior)

— Linear Regression (e.g. with basis function)

— Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

* Suppose we wish to predict Google’s stock price at
time t+1

 What features should we use?
(putting all computational concerns aside)
— Stock prices of all other stocks at times t, t-1, t-2, ..., t-k

— Mentions of Google with positive [negative sentiment
words in all newspapers and social media outlets

* Do we believe that all of these features are going to
be useful?

Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)

Regularization

Whiteboard
— L2, L1, Lo Regularization
— Example: Linear Regression
— Probabilistic Interpretation of Regularization

Regularization

Don’t Regularize the Bias (Intercept) Parameter!

In our models so far, the bias [intercept parameter is
usually denoted by 6, -- that is, the parameter for which

we fixed x; = 1
Regularizers always avoid penalizing this bias / intercept
parameter

Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data

It’s common to whiten each feature by subtracting its
mean and dividing by its variance
For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Regularization:

In\ = +18

Slide courtesy of William Cohen

Polynomial Coefficients

none exp(18) huge
W 0.35 0.35 0.13
wk 232.37 4.74 -0.05
w} -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
WE 640042.26 50.28 -0.02
wg | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
w3 -557682.99 -91.53 0.00
wy | 125201.43 72.68 0.01

Slide courtesy of William Cohen

Over Regularization:

Slide courtesy of William Cohen

Regularization Exercise

In-class Exercise
1. Plot train error vs. # features (cartoon)
2. Plot test error vs. # features (cartoon)

A

error

features

Example: Logistic Regression

Training
Data
3 -
2 -
1 -
P
0 -
8
-1 -
-2 -
-3 ~

Test
Data

Example: Logistic Regression

4 - _
° °
3- ~ -
.0) v.° .)
®
v R . °. . . °
°
2 - v Y h..vo' v, °, ¢ ° ° ° -
°® v v: y V.V. ® . O °
vy .V ¢ o' o:’;"~vﬁ.}. e ® o o .. .
1- yV'lv‘v.v"v e Do ~
SNSRI A o SRS AR
v TR LA ARS L e _°
v vv v ¥y y & ° o %% \/ = 3 ¢
\ 4
0- v w Y V,viv A A A N :‘v;V { & '° v® -
v vv)" vV @ v v ve
v ¥y 4 WA A R/ v o
= v'v' vy v, 8 N v °,
-1 - A/ Vv ;‘Vv"v }v’ v o v ¥ -
v v Y v VV‘V °)
v v vV Y Y M
vv v’ v:v o M '.
-2 - v -
v yv'
-3 - v _
—4 - | | | | | | | | -
-3 -2 -1 0 1 2 3 4

22

error

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

0.10 |
107°

— train
— test

10”7

107

1073

Example: Logistic Regression

1071 10t

1/lambda

103

10°

10’

10°

23

Example: Logistic Regression

- Classijfication with Logistic Regression (lambda=1e-05)

24

Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.0001)

25

Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)

26

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)

27

Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)

28

Example: Logistic Regression

Classification with Logistic Regression (lambda=1)

29

Example: Logistic Regression

Classification with Logistic Regression (lambda=10)

30

Example: Logistic Regression

Classification with Logistic Regression (lambda=100)

31

Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)

32

Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)

33

Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000)

34

Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+06)

35

Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07)

error

0.45 -

0.40 -

0.35 -

0.30 -

0.25 -

0.20 -

0.15 -

0.10 |
107°

— train
— test

10”7

107

1073

Example: Logistic Regression

1071 10t

1/lambda

103

10°

10’

10°

37

1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

. Nonlinear features are require no changes

to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors

THE PERCEPTRON ALGORITHM

dimenzion 3

.............

Background:

Q

>

Background: Hyperplanes%

Hyperplane (Definition 1):
H={x:w'x=>b}
Hyperplane (Definition 2):
H={x:wx=0
and x, = 1}

Half-spaces:
HT ={x:w'x>0and x, =1}

H ={x:w'x<0and x, =1}

Online Learning

Fori=1,2,3,...:
* Receive an unlabeled instance x®
* Predicty’ = h(x(")

* Receive true label y(
Check for correctness (y’ == y(i))

Goal:
e Minimize the number of mistakes

Online Learning: Motivation

Examples

1. Email classification (distribution of both
spam and regular mail changes over time,
but the target function stays fixed - last
year's spam still looks like spam).

2. Recommendation systems. Recommending
movies, etc.

3. Predicting whether a user will be interested
in a new news article or not.

4. Ad placementin a new market.

Slide from Nina Balcan

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex € R* andy € {+1, -1}

Prediction: Output determined by hyperplane.
Yy = he (X) — Sigl”l(HTX) sign(a) = {1_1 ifa >0

otherwise
Learning: Iterative procedure:
* while not converged
* receive next example (x(, y())
 predicty’ = h(x®)
* if positive mistake: add x(V to parameters
* if negative mistake: subtract x(from parameters

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs
are discrete. (xD), yM), (x3@), y@), ...
wherex € R* andy € {+1, -1}

Prediction: Output determined by hyperplane.
J = ho(x) =sign(@'x) sgnlw)= {1_,1 fa>0

otherwise
Learning:

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x(1), y(), (x(2) 42 ...}
2 00 > Initialize parameters
3 fori € {1,2,...} do > For each example
4 i + sign(67x®) > Predict
5
6
7

if § # y(®) then > If mistake
0 — 0 + yIx® > Update parameters

return 6

Perceptron Algorithm: Example

Example: (-1,2) - X

(1,0) + \\‘\‘j;‘
1L+ X |
(—1,0) —
(-1,-2)— X .
(1,—-1) +

Algorithm:

6, = (0,0)
0, =0, —(-12) =(1,-2)

= Set t=1, start with all-zeroes weight vector w;.
= Given example x, predict positive iff 8, - x = 0.
= On a mistake, update as follows: 0; =0, + (11 =(2-1)
e Mistake on positive, update 6,,; « 6; + x 0,=06;—(—1,-2)=(31)
e Mistake on negative, update ;1 < 6, — x

Slide adapted from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Margin of positive example x;

Margin of negative example x,

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w-x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the
distance from x to the plane w - x = 0 (or the negative if on wrong side)

Definition: The margin y,, of a set of examples S wrt a linear
separator w is the smallest margin over points x € S.

Definition: The margin y of a set of examples S is the maximum y,,
over all linear separators w.

Slide from Nina Balcan

Analysis: Perceptron

Perceptron Mistake Bound

Guarantee: If data has margin v and all points inside a ball of
radius R, then Perceptron makes < (R/v)? mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes; algo is invariant to scaling.)

Slide adapted from Nina Balcan

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(9), y()I N,

Suppose:
1. Finite size inputs: ||2V|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and

Yy (0" - x D) > v, Vi
Then: The number of mistakes made by the Perceptron

o

algorithm on this dataset is N

k< (R/v)°

Analysis: Perceptron

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
1. Finitesizeinputs: ||| < R !
2. Linearly separable data: 30 s.t. ||0*||] = 1and |

\

Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1),y(M), (x() 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y(D (0% . x()) < 0 then > If mistake
5 g+ o gk) 4 (D)% (@) > Update parameters
6 E+—k+1
7 return 6

Analysis: Perceptron

Whiteboard:
Proof of Perceptron Mistake Bound

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”
setting that we’ve discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

1: procedure PERCEPTRON(D = {(x1), y), ... (xV) 4V
2 60 > Initialize parameters
3 while not converged do

4 fori e {1,2,..., N} do > For each example
5: § « sign(67 x() > Predict
6

7

8

if § # y(*) then > If mistake
0 «— 6+ yIx) > Update parameters

return 6

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training
dataset, D. We call this the “batch’ setting in contrast to the “online”

setting that we’ve discussed so far.

Discussion:
The Batch Perceptron Algorithm can be derived in two ways.
1. By extending the online Perceptron algorithm to the batch
setting (as mentioned above)
2. By applying Stochastic Gradient Descent (SGD) to minimize a

so-called Hinge Loss on a linear separator

Extensions of Perceptron

* Kernel Perceptron
— Choose a kernel K(x’, x)
— Apply the kernel trick to Perceptron
— Resulting algorithm is still very simple

* Structured Perceptron

— Basic idea can also be applied when y ranges
over an exponentially large set

— Mistake bound does not depend on the size of
that set

Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (he (x(i)) B y(i))
he(x) = p(y|z)
2. Least Mean Squares 5. 1
Or < 01 + . :
ho(x) = 87x TP T 4 exp A(he (x®) — y®)
3. Perceptron 6. _ , .
(1)) _ (D). (1)
he(x) = sign(HTX) O < Ok + A(ho (X)) — 4™y,
A.1=5,2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6) 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6

71

Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake
is made, add [subtract the features

For linearly separable and inseparable data,
we can bound the number of mistakes
(geometric argument)

Extensions support nonlinear separators and
structured prediction

DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS

Generative vs. Discriminative

* Generative Classifiers:
— Example: Naive Bayes
— Define a joint model of the observations x and the

labels y: p(x,y)
— Learning maximizes (joint) likelihood

— Use Bayes’ Rule to classify based on the posterior:

p(y|x) = p(x|y)p(y)/p(x)
* Discriminative Classifiers:
— Example: Logistic Regression
— Directly model the conditional: p(y|x)
— Learning maximizes conditional likelihood

Generative vs. Discriminative

Whiteboard
— Contrast: To model p(x) or not to model p(x)?

Generative vs. Discriminative

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite
training dataset]

If model assumptions are correct: Naive Bayes is a more
efficient learner (requires fewer samples) than Logistic
Regression

76

pima (continuous)

adult (continuous)

boston (predict if > median price, continuous)
0.45 ;

0.4f

0.35¢

error

0.3}

0.25¢

%% 20 40 60

05 05
0.45} 045/
‘ 0.4}
_ 04 _
2 20.35
®0.35| ¢
0.3}
0.3 0.25
0.2% 20 40 60 %% 10 20 30
solid: NB dashed: LR
liver disorders (ContinUOUS)
0.5 - ' 0.5
0.45¢
0.45¢ \
. _ 04}
= =
) . @
0.35|
0.4}
0.3f
0.350 2'0 80 0.250 20

Slide courtesy of William Cohen

sonar (continuous)

40 60 80 100 120
m 77

solid: NB dashed: LR

promoters (discrete) lymphography (discrete)
0.5 ; ; - - 0.5 ; :

error

0 20 40 60 80 100 "0 50 100 150
m m

Naive Bayes makes stronger assumptions about the data

but needs fewer examples to estimate the parameters

“On Discriminative vs Generative Classifiers:” Andrew Ng
and Michael Jordan, NIPS 2001.

78
Slide courtesy of William Cohen

Generative vs. Discriminative

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead

Naive Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [one extremes

Logistic Regression:
Parameters are not probabilities = Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [one
extremes)

Naive Bayes vs. Logistic Reg.

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.

