

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Regularization + Perceptron

Perceptron Readings:

Murphy 8.5.4 Bishop 4.1.7 HTF --Mitchell 4.4.0 Matt Gormley Lecture 10 February 20, 2016

Reminders

- Homework 3: Linear / Logistic Regression
 - Release: Mon, Feb. 13
 - Due: Wed, Feb. 22 at 11:59pm
- Homework 4: Perceptron / Kernels / SVM
 - Release: Wed, Feb. 22
 - Due: Wed, Mar. 01 at 11:59pm

1 week for HW4

- Midterm Exam (Evening Exam)
 - Tue, Mar. 07 at 7:00pm 9:30pm
 - See Piazza for details about location

Outline

Regularization

- Motivation: Overfitting
- L2, L1, Lo Regularization
- Relation between Regularization and MAP Estimation

Perceptron

- Online Learning
- Margin Definitions
- Perceptron Algorithm
- Perceptron Mistake Bound

Generative vs. Discriminative Classifiers

REGULARIZATION

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- KNN (e.g. when k is small)
- Naïve Bayes (e.g. without a prior)
- Linear Regression (e.g. with basis function)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

- Suppose we wish to predict Google's stock price at time t+1
- What features should we use?
 (putting all computational concerns aside)
 - Stock prices of all other stocks at times t, t-1, t-2, ..., t k
 - Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets
- Do we believe that all of these features are going to be useful?

Motivation: Regularization

Occam's Razor: prefer the simplest hypothesis

- What does it mean for a hypothesis (or model) to be simple?
 - small number of features (model selection)
 - small number of "important" features (shrinkage)

Regularization

Whiteboard

- L2, L1, Lo Regularization
- Example: Linear Regression
- Probabilistic Interpretation of Regularization

Regularization

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

Regularization:

Polynomial Coefficients

	none	exp(18)	huge
w_0^{\star}	0.35	0.35	0.13
w_1^{\star}	232.37	4.74	-0.05
w_2^{\star}	-5321.83	-0.77	-0.06
w_3^{\star}	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^{\star}	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

Over Regularization:

Regularization Exercise

In-class Exercise

- Plot train error vs. # features (cartoon)
- 2. Plot test error vs. # features (cartoon)

Training Data

Takeaways

- 1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features are require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4. Regularization** and **MAP estimation** are equivalent for appropriately chosen priors

THE PERCEPTRON ALGORITHM

Background: Hyperplanes

Hyperplane (Definition 1):

$$\mathcal{H} = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} = b\}$$

Hyperplane (Definition 2):

$$\mathcal{H} = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} = 0$$
and $\mathbf{x}_0 = 1 \}$

Half-spaces:

$$\mathcal{H}^+ = \{ \mathbf{x} : \mathbf{w}^T \mathbf{x} > 0 \text{ and } \mathbf{x}_0 = 1 \}$$

$$\mathcal{H}^- = \{\mathbf{x} : \mathbf{w}^T \mathbf{x} < 0 \text{ and } \mathbf{x}_0 = 1\}$$

Directly modeling the hyperplane would use a decision function:

$$h(\mathbf{x}) = \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

for:

$$y \in \{-1, +1\}$$

d: Hyperplanes

Why don't we drop the generative model and try to learn this hyperplane directly?

Online Learning

For
$$i = 1, 2, 3, ...$$
:

- Receive an unlabeled instance x⁽ⁱ⁾
- Predict y' = h(x⁽ⁱ⁾)
- Receive true label y⁽ⁱ⁾
 Check for correctness (y' == y⁽ⁱ⁾)

Goal:

Minimize the number of mistakes

Online Learning: Motivation

Examples

- 1. Email classification (distribution of both spam and regular mail changes over time, but the target function stays fixed last year's spam still looks like spam).
- 2. Recommendation systems. Recommending movies, etc.
- Predicting whether a user will be interested in a new news article or not.
- 4. Ad placement in a new market.

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs

 $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$ are discrete.

where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = \mathrm{sign}(m{ heta}^T\mathbf{x})$$
 sign(a) = $\begin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$

$$\mathsf{sign}(a) = egin{cases} 1, & \mathsf{if}\ a \geq 0 \ -1, & \mathsf{otherwise} \end{cases}$$

Learning: Iterative procedure:

- while not converged
 - receive next example (x⁽ⁱ⁾, y⁽ⁱ⁾)
 - predict y' = h(x⁽ⁱ⁾)
 - **if** positive mistake: **add x**⁽ⁱ⁾ to parameters
 - **if** negative mistake: **subtract x**⁽ⁱ⁾ from parameters

Perceptron Algorithm

Data: Inputs are continuous vectors of length K. Outputs $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots$ are discrete.

where $\mathbf{x} \in \mathbb{R}^K$ and $y \in \{+1, -1\}$

Prediction: Output determined by hyperplane.

$$\hat{y} = h_{m{ heta}}(\mathbf{x}) = \mathrm{sign}(m{ heta}^T\mathbf{x})$$
 sign(a) = $\begin{cases} 1, & \text{if } a \geq 0 \\ -1, & \text{otherwise} \end{cases}$

$$sign(a) = \begin{cases} 1, & \text{if } a \ge 0 \\ -1, & \text{otherwise} \end{cases}$$

Learning:

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure PERCEPTRON(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
 2: \theta \leftarrow 0
                                                                                               ▷ Initialize parameters
3: for i \in \{1, 2, \ldots\} do 
4: \hat{y} \leftarrow \operatorname{sign}(\boldsymbol{\theta}^T\mathbf{x}^{(i)})
                                                                                                     ⊳ For each example
                                                                                                                            ▶ Predict
5: if \hat{y} \neq y^{(i)} then
6: \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)}
                                                                                                                      ▶ If mistake
                     \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}

    □ Update parameters

             return \theta
 7:
```

Perceptron Algorithm: Example

Example:
$$(-1,2) - \times (1,0) + \checkmark$$

$$(1,1) + X$$

$$(-1,0)$$
 – \checkmark

$$(-1, -2) - X$$

$$(1,-1) + \checkmark$$

Algorithm:

- Set t=1, start with all-zeroes weight vector w_1 .
- Given example x, predict positive iff $\theta_t \cdot x \ge 0$.
- On a mistake, update as follows:
 - Mistake on positive, update $\theta_{t+1} \leftarrow \theta_t + x$
 - Mistake on negative, update $\theta_{t+1} \leftarrow \theta_t x$

$$\theta_1 = (0,0)$$
 $\theta_2 = \theta_1 - (-1,2) = (1,-2)$
 $\theta_3 = \theta_2 + (1,1) = (2,-1)$
 $\theta_4 = \theta_3 - (-1,-2) = (3,1)$

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear sep. w is the distance from x to the plane $w \cdot x = 0$ (or the negative if on wrong side)

Definition: The margin γ_w of a set of examples S wrt a linear separator w is the smallest margin over points $x \in S$.

Definition: The margin γ of a set of examples S is the maximum γ_w over all linear separators w.

Slide from Nina Balcan

Perceptron Mistake Bound

Guarantee: If data has margin γ and all points inside a ball of radius R, then Perceptron makes $\leq (R/\gamma)^2$ mistakes.

(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes; algo is invariant to scaling.)

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \theta^*$ s.t. $||\theta^*|| = 1$ and $y^{(i)}(\theta^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron

algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

$$|Ak \le ||\boldsymbol{\theta}^{(k+1)}|| \le B\sqrt{k}$$

Theorem 0.1 (Block (1962), Novikoff (1962)).

Given dataset: $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$.

Suppose:

- 1. Finite size inputs: $||x^{(i)}|| \leq R$
- 2. Linearly separable data: $\exists \pmb{\theta}^*$ s.t. $||\pmb{\theta}^*|| = 1$ and $y^{(i)}(\pmb{\theta}^* \cdot \mathbf{x}^{(i)}) \geq \gamma, \forall i$

Then: The number of mistakes made by the Perceptron algorithm on this dataset is

$$k \le (R/\gamma)^2$$

Algorithm 1 Perceptron Learning Algorithm (Online)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \ldots\})
                                                                           ▷ Initialize parameters
          \theta \leftarrow \mathbf{0}, k = 1
       for i \in \{1, 2, ...\} do
                                                                                ▷ For each example
3:
                if y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0 then
                                                                                             ▶ If mistake
4:
                      \boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}
                                                                            5:
                     k \leftarrow k + 1
6:
          return \theta
7:
```

Whiteboard: Proof of Perceptron Mistake Bound

Proof of Perceptron Mistake Bound:

Part 1: for some A,
$$Ak \leq ||\boldsymbol{\theta}^{(k+1)}||$$

$$\boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* = (\boldsymbol{\theta}^{(k)} + y^{(i)} \mathbf{x}^{(i)}) \boldsymbol{\theta}^*$$

by Perceptron algorithm update

$$= \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + y^{(i)} (\boldsymbol{\theta}^* \cdot \mathbf{x}^{(i)})$$

$$\geq \boldsymbol{\theta}^{(k)} \cdot \boldsymbol{\theta}^* + \gamma$$

by assumption

$$\Rightarrow \boldsymbol{\theta}^{(k+1)} \cdot \boldsymbol{\theta}^* \ge k\gamma$$

by induction on k since $\theta^{(1)} = \mathbf{0}$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \ge k\gamma$$

since
$$||\mathbf{w}|| \times ||\mathbf{u}|| \ge \mathbf{w} \cdot \mathbf{u}$$
 and $||\theta^*|| = 1$

Cauchy-Schwartz inequality

Proof of Perceptron Mistake Bound:

Part 2: for some B,
$$||\boldsymbol{\theta}^{(k+1)}|| \leq B\sqrt{k}$$

$$||\boldsymbol{\theta}^{(k+1)}||^2 = ||\boldsymbol{\theta}^{(k)} + y^{(i)}\mathbf{x}^{(i)}||^2$$

by Perceptron algorithm update

=
$$||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2||\mathbf{x}^{(i)}||^2 + 2y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)})$$

$$\leq ||\boldsymbol{\theta}^{(k)}||^2 + (y^{(i)})^2 ||\mathbf{x}^{(i)}||^2$$

since kth mistake $\Rightarrow y^{(i)}(\boldsymbol{\theta}^{(k)} \cdot \mathbf{x}^{(i)}) \leq 0$

$$= ||\boldsymbol{\theta}^{(k)}||^2 + R^2$$

since $(y^{(i)})^2 ||\mathbf{x}^{(i)}||^2 = ||\mathbf{x}^{(i)}||^2 = R^2$ by assumption and $(y^{(i)})^2 = 1$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}||^2 \le kR^2$$

by induction on k since $(\theta^{(1)})^2 = 0$

$$\Rightarrow ||\boldsymbol{\theta}^{(k+1)}|| \leq \sqrt{k}R$$

Proof of Perceptron Mistake Bound:

Part 3: Combining the bounds finishes the proof.

$$k\gamma \le ||\boldsymbol{\theta}^{(k+1)}|| \le \sqrt{k}R$$
$$\Rightarrow k \le (R/\gamma)^2$$

The total number of mistakes must be less than this

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Algorithm 1 Perceptron Learning Algorithm (Batch)

```
1: procedure Perceptron(\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\})
           \theta \leftarrow 0
                                                                       ▷ Initialize parameters
2:
          while not converged do
3:
                 for i \in \{1, 2, \dots, N\} do
                                                                            ▷ For each example
4:
                       \hat{y} \leftarrow \mathsf{sign}(\boldsymbol{\theta}^T \mathbf{x}^{(i)})
                                                                                               ▶ Predict
5:
                       if \hat{y} \neq y^{(i)} then
                                                                                          ▶ If mistake
6:
                             \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(i)} \mathbf{x}^{(i)}

    □ Update parameters

7:
           return \theta
8:
```

(Batch) Perceptron Algorithm

Learning for Perceptron also works if we have a fixed training dataset, D. We call this the "batch" setting in contrast to the "online" setting that we've discussed so far.

Discussion:

The Batch Perceptron Algorithm can be derived in two ways.

- By extending the online Perceptron algorithm to the batch setting (as mentioned above)
- By applying Stochastic Gradient Descent (SGD) to minimize a so-called Hinge Loss on a linear separator

Extensions of Perceptron

Kernel Perceptron

- Choose a kernel K(x', x)
- Apply the kernel trick to Perceptron
- Resulting algorithm is still very simple

Structured Perceptron

- Basic idea can also be applied when y ranges over an exponentially large set
- Mistake bound does not depend on the size of that set

Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = p(y|x)$$

2. Least Mean Squares

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}$$

3. Perceptron

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \operatorname{sign}(\boldsymbol{\theta}^T \mathbf{x})$$

$$\theta_k \leftarrow \theta_k + (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})$$

$$\theta_k \leftarrow \theta_k + \frac{1}{1 + \exp \lambda (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})}$$

6.
$$\theta_k \leftarrow \theta_k + \lambda (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}) x_k^{(i)}$$

Summary: Perceptron

- Perceptron is a linear classifier
- Simple learning algorithm: when a mistake is made, add / subtract the features
- For linearly separable and inseparable data, we can bound the number of mistakes (geometric argument)
- Extensions support nonlinear separators and structured prediction

DISCRIMINATIVE AND GENERATIVE CLASSIFIERS

Generative Classifiers:

- Example: Naïve Bayes
- Define a joint model of the observations ${\bf x}$ and the labels y: $p({\bf x},y)$
- Learning maximizes (joint) likelihood
- Use Bayes' Rule to classify based on the posterior:

$$p(y|\mathbf{x}) = p(\mathbf{x}|y)p(y)/p(\mathbf{x})$$

Discriminative Classifiers:

- Example: Logistic Regression
- Directly model the conditional: $p(y|\mathbf{x})$
- Learning maximizes conditional likelihood

Whiteboard

- Contrast: To model p(x) or not to model p(x)?

Finite Sample Analysis (Ng & Jordan, 2002)

[Assume that we are learning from a finite training dataset]

If model assumptions are correct: Naive Bayes is a more efficient learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has lower asymtotic error, and does better than Naïve Bayes

solid: NB dashed: LR

Naïve Bayes makes stronger assumptions about the data but needs fewer examples to estimate the parameters

"On Discriminative vs Generative Classifiers:" Andrew Ng and Michael Jordan, NIPS 2001.

Learning (Parameter Estimation)

Naïve Bayes:

Parameters are decoupled -> Closed form solution for MLE

Logistic Regression:

Parameters are coupled \rightarrow No closed form solution – must use iterative optimization techniques instead

Naïve Bayes vs. Logistic Reg.

Learning (MAP Estimation of Parameters)

Bernoulli Naïve Bayes:

Parameters are probabilities \rightarrow Beta prior (usually) pushes probabilities away from zero / one extremes

Logistic Regression:

Parameters are not probabilities

Gaussian prior encourages parameters to be close to zero

(effectively pushes the probabilities away from zero / one extremes)

Naïve Bayes vs. Logistic Reg.

Features

Naïve Bayes:

Features x are assumed to be conditionally independent given y. (i.e. Naïve Bayes Assumption)

Logistic Regression:

No assumptions are made about the form of the features x. They can be dependent and correlated in any fashion.