RECITATION 7
HIDDEN MARKOV MODELS

10-601: INTRODUCTION TO MACHINE LEARNING
11/11/2022

Version: 1.2

1 HMDMs

You are given the following training data:

win_C league_C Liverpool_D
win_C Liverpool_D league_C

Liverpool_ D win_C
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Figure 1: Visualization of Sequences

You are also given the following observed (validation) data: Liverpool win league
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1.1 Initial, Emission, and Transition Matrices

Let each observed state z; € {1,2,3}, where 1 corresponds to win, 2 corresponds to league,
and 3 corresponds to Liverpool. Let each hidden state Y; € {C, D}, where s; = C' and
So = D.

First, we need to estimate the HMM parameters - the initial probabilities: 7, the transition
probability matrix: B, and the emission probability matrix: A. Remember that we use
MLE estimation to do so:

A (8 _
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OBjk:
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Note: When learning an HMM, we add 1 to each count to make a pseudocount. This
improves performance when evaluating unseen cases in the validation set or test set.

1. Find the initial matrix 7. Recall that m; = P(Y; = s;).

e Find count matrix and pseudocount matrix:

Count Count
C Pseudocount O
IR
D D
e Normalize:
C
mT =
D

2. Find the transition matrix B. Recall that B, = P(Y; = 55, | Yi_1 = s;).

e Find count matrix and pseudocount matrix:

C D C D
C Pseudocount C
e

D D
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e Normalize:

3. Find the emission matrix A. Recall that A;;, = P(X; =k | Y; = s;).

e Find count matrix and pseudocount matrix:

win league Liverpool win league Liverpool
C Pseudocount C
—_

D D

e Normalize:
win league Liverpool
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1.2 The Forward Algorithm

One type of inference problem that can be answered by an HMM is Evaluation - computing
the probability of a sequence of observations. We calculate the likelihood of observing the
validation sequence:

Liverpool win league

To do so, we calculate the forward probability matrix a. Recall that

at(3k> = P(:El:tay;f = Sk)

We have the following bottom-up dynamic programming algorithm to calculate the forward
probabilities:

for j=1,...,J:
if t == 1:
a1(sj) = mj * Aja,
else:
ai(8j) = Aja, * Dy ct—1(k) * By j
START END

Liverpool Win League

First, use the algorithm as defined above to calculate oy (C') and «ay(D).
o = |:a1(0):| — |:7TC*AC,I1:| — |:TC*AC,Liverpool1 _

oy (D) Tp * AC,xl Tp * AD,Liverpool
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Observe that this can be vectorized as m © A 4,.
Indeed, the way B and A are constructed allows us to also vectorize the computation of the

forward probabilities for 1 < ¢ < T

A,mt © (BTat—l)

To find the likelihood of observing the validation sequence, all we need are the final forward
probabilities:

P(X; = Liverpool, Xy = win, X3 = league)

= Z P(x; = Liverpool, rs = win, z3 = league, Y3 = y;)

ys€{C,D}

= Z az(yt)

yte{C7D}
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1.3 The Backward Algorithm

Another type of inference problem that can be answered by an HMM is computing Marginals
- computing the marginal probability distribution for a hidden state, given a sequence of ob-
servations. Recall that

sk) B (sx)

P(Y; = syl) = 24 P@)

Therefore, along with the forward probability matrix a, we need to find the backward
probability matrix 3, where

ﬁt(Sk) = P($t+1;T|Y% = Sk)

We have a similar bottom-up dynamic programming algorithm to calculate the backward
probabilities:

/Bt(Sj) = Zgzl Ak,l't+1 ﬁt“rl(sk)B]:k

Conveniently, there is also a matrix expression for the vector of backward probabilities for a
given time step ¢t < T"

B(A,It+1 © 18t+1>

e 31=B(A,,00)=
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Now, we have our v and 3 matrices:

C D
o — 1 0.0750 0.2667
2 0.1150 0.0186
3 0.0225 0.0123

C D
1 0.0823 0.1072
P= 2 0.2500 0.3229
3 1.0000 1.0000

1. What is P(Y; = C|Z)?

2. What is P(Y2 = D|Z)?

3. What is P(Y; = C|Z)?

4. What is the minimum Bayes risk (MBR) decoder prediction for Y57
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1.4 The Viterbi Algorithm

Instead of finding the most likely hidden state at some time t, we may instead want to find
the most likely sequence of hidden states. This is known as Viterbi Decoding - computing
the most probable assignment of hidden states, given a sequence of observations.

The sequence of words you observe is again the same: Liverpool win league
However, you are only given the tag of the last word: league_C

1. Recall that:

we(Sk) = max P(x1.4, Y1:6-1, Yt = Sk)

bi(s) = argmax P (1.4, Y14—1, Yt = Sk)

Yi:t—1

Using the formulae above and the first order Markov assumption, derive a recursive def-
inition for wy(sy) and by(sy) that will let you employ bottom-up dynamic programming.
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Below is the trellis corresponding to the given data:

START

END

Liverpool Win League

2. Annotate the trellis at the nodes that correspond to:
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3. Find the most likely sequence of tags given the observed data:

(a) Set up the matrices w and b

C D START
Wo 0 O 1
w = w - = —
W - - =

and

b [- - -
b= by | - — -
by | - — -
by |- - -

Initialize wo(START) =1

(b) Solve for matrix entries using Dynamic Programming;:

wi(C) = max P(x; = Liverpool|Y; = C)wy(s;)P(Y; =C)

5;€C,D,START

wi(D) = max P(x; = Liverpool|Y; = D)wy(s;)P(Y; =D)

5;€C,D,START

wy(C) = max P(xy = win|Ys = C)w;(s;) P(Yy = C|Y; = s))

s;€C,D

s )

bQ(C) -
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wa(D) = max P(zy = win|Ys = D)w;(s;)P(Y2 =D|Y; = s;)

s;€C,D

— )

w3(C') = max P(x3 = league|Ys = C)wy(s;)P(Ys = C|Ys = s;)

s;€CD

S )

w3(D) = max P(z3 = league|Y; = D)wsy(s;)P(Y; =D|Y2 = s;)

s;€CD

— )

by (D) =
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Now, to figure out the order, we set ¢y = by 1(Ye41)

Jr41 = END

Y3 = by(END)

o = bs( )
U1 = by )
o = b1 ( )

So, the most likely sequence is:
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2 Working in Log-space

2.1 Motivation

Some of the probabilities we work with in Homework 7 about are tiny and some of them are
much larger. We tend to work with the tiny ones in log-space and only get back probabilities
if we really need them for some other purpose. Throughout hw7 you will keep your proba-
bilities in log-space.In this section we will motivate why we use log-space for small values.

Given the following series of probability values:

Plzy=1)| Plxao=1|z1=1) | Plag=1]as =121 = 1)
0.002 0.004 0.003

We want to find P(x; = 1,29 = 1,23 = 1). Suppose we have a calculator which only has 4
decimal places of precision, so it can only store values of format X. XXXX

1. What is the correct value of P(x; = 1,29 = 1,23 = 1) without any precision limits?

P(l’lzl,xgzl,%g:l)zp(%g:l|$2:17I1:1)*P($2:1|Q?1:1)*P($1:1)

2. What is the value of P(x; = 1,25 = 1,23 = 1) using our faulty calculator?
Plzy=1,29=1)
=Plag=1]x;=1)P(x;=1) =
Plxy=1z0=1,23=1) =

3. How do the values of P(x; = 1,29 = 1,23 = 1) from part (1) and (2) compare?
No precision limits: P(zqy = 1,20 = 1,23 =1) =
Faulty calculator: P(z; = 1,20 =1,23 =1) =

4. What is the value of P(zy = 1,29 = 1,23 = 1) if we perform the same computation
but in log space?

log (P(z1 = 1,20 = 1,25 = 1))
=log(x; =1)+log(P(xea =121 =1))+log(P(zz=1]| 22 =1,21 = 1)
log (P(xlzl,xgzl,xgzl)) o

If we were to recover our value of P(x; = 1l,2o = 1,23 =1) = e

This is good! But we can use the log sum exp trick to extend its use to even smaller
scales.
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2.2 Forward and Backward Algorithm in Log Space

In the forward algorithm, recall that the entries in & can be computed using the bottom-up
dynamic programming algorithm:

° O{l(j) = WjAjzl

o Fort>1, a,(j) = Aju, iy v1(k) By,

1. Derive log (a1 (j)) in terms of log(m;) and log(A;s,)
log (a1(j)) = log (mjAjz,) =

2. Derive log (a;(j)) in terms of log (a;—1(k)) and log Ay;
log (Oét(j))
= log (Aju, 2oy a1 (k) By;)
= log(Ajo,) +log (35, av-1(k) Biy)

In the backward algorithm, we also have a similar bottom-up dynamic programming algo-
rithm:

e fBr(j) =1

o For 1 <t <T—1,B,(j) = Xy Aeves B (k) By

1. Derive log (B7(4))
log (8r(5)) = log(1) =0

2. Derive log (8;(j)) in terms of log(Aks,,, ), log (Bt+1(k)), and log(B;x)
log (5:(7))
= log (Zizl Apayys Ber1 (k) Bjk)

= log ( Ziﬂ e'8 (A’“”tﬂﬁt“(k)Bjk))
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After transforming the equations into log form, you may discover calculations of the
following type:

log » ~ exp (v;)

This may be programmed as is, but exp (v;) may cause underflow when v; is large and
negative. One way to avoid this is to use the log-sum-exp trick.

The log-sum-exp trick simply adds the maximum value in the vector to the log prob-
abilities as follows:

log Z exp(v; —m)) + mgax(vi)


https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/
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3 Dynamic Programming

DP Notebook

To access this Colab notebook you will need to be logged into Google Drive with your Andrew
email.


https://colab.research.google.com/drive/1kh27-n1JVAYSMm3Gy6Zvlp98du2Vyljn?usp=sharing
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