
Recitation 4
Logistic Regression

10-301/601: Introduction to Machine Learning

06/16/2022

1 Parameter Derivation Practice

We would like to fit a regression model to the dataset

D =
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,

(
x(N), y(N)

)}
with x(i) ∈ RM by minimizing the loss function:

J(w) =
N∑
i=1

(
y(i) −

L∑
l=1

wl

M∑
j=1

wjx
(i)
j

)
.

To find a best model match, we want to minimize the loss function with respect to the
weights w. This is just a practice in taking the first order condition of J(w) with respect
to each wk ∈ w, setting them equal to zero, and solving for wk. In other words, we set
∂J(w)
∂wk

= 0 and solve for wk.

(a) Solve for ∂J(w)
∂wk

and set it equal to zero.

10-301/601: Recitation 4 Page 2 of 12 06/16/2022

(b) Fill in the blanks to solve for wk.

0 = −
N∑
i=1

(
M∑
j=1

wjx
(i)
j + xk

L∑
l=1

wl

)

0 = −
N∑
i=1

(
+

M∑
j=1,

wjx
(i)
j + + x

(i)
k

L∑
l=1,

wl

)

0 = −
N∑
i=1

(
M∑

j=1,

wjx
(i)
j + x

(i)
k

L∑
l=1,

wl

)

10-301/601: Recitation 4 Page 3 of 12 06/16/2022

2 Binary Logistic Regression

Consider the following dataset,

D =
{(

x(1), y(1)
)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ RM , y(i) ∈ {0, 1}.

Notice that instead of regressing on continuous variables, as we do in linear regression, we
wish to predict on discrete variables, and, more specifically, binary outcomes (this process
is called classification). Since we want to take noise into account when making predictions,
we will predict the probability of each outcome given some inputs, each denoted x(i). This
means that the result of the linear combination of each input, x(i) with the parameter vector,
θ, or, θTx(i), must be manipulated to fit between zero and one. We use the sigmoid function,
σ(·), for this purpose.

Recall that

σ(θTx(i)) =
1

1 + exp(−θTx(i))
=

exp(θTx(i))

1 + exp(θTx(i))
.

The conditional probability of y(i) given x(i) is,

p
(
y(i) | x(i),θ

)
=

{
σ(θTx(i)) y(i) = 1

1− σ(θTx(i)) y(i) = 0
.

We can rewrite this as a single statement,

p
(
y(i) | x(i),θ

)
= σ(θTx(i))y

(i)

(1− σ(θTx(i)))(1−y(i)).

Can you show why this is true?

We assume each observation of y(i) in the data is independent and identically distributed.
This means we can write down the likelihood of the data as a product of negative conditional
probabilities.

10-301/601: Recitation 4 Page 4 of 12 06/16/2022

Let’s plug in the expression for p
(
y(i) | x(i),θ

)
and simplify.

In stochastic gradient descent, we use only a single x(i). Given ϕ(i) = σ(θTx(i)) and

J (i)(θ) = −y(i) log(ϕ(i))− (1− y(i)) log(1− ϕ(i))

Show that the partial derivative of J (i)(θ) with respect to the jth parameter θj is as follows:

∂J (i)(θ)

∂θj
= (σ(θTx(i))− yi)x

(i)
j

Remember,
∂ϕ(i)

∂θj

= ϕ(i) ∗ (1− ϕ(i)) ∗ ∂θTx(i)

∂θj

10-301/601: Recitation 4 Page 5 of 12 06/16/2022

.

10-301/601: Recitation 4 Page 6 of 12 06/16/2022

3 Feature Representation for Sentiment Classification

In many machine learning problems, we will want to find appropriate representations for the
inputs of the algorithm we are developing. In Homework 4, we will work on using logistic
regression for a sentiment classification task, where our algorithm takes a paragraph of movie
review as the input and outputs a binary value denoting whether the review is positive or
not. To build an appropriate representation for the input (aka. the review text), we consider
a representation built using Word2vec1 word embeddings.

In this section, consider a scenario where we are interested in representing the following text:

a hot dog is not a sandwich because it is not square (1)

We consider the following dictionary (denoted below as Vocab) as the set of vocabulary
that we will consider. Note that the vocabulary dictionary might not contain all words in
the text shown above.

dictionary = {

"the": 0,

"square": 1,

"hot": 2,

"is": 3,

"not": 4,

"a": 5,

"happy": 6,

"sandwich": 7

}

1You can read more about Word2vec on this blog (or the original research paper for the enthusiasts!)

https://arxiv.org/pdf/1301.3781.pdf
https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30
https://arxiv.org/pdf/1301.3781.pdf

10-301/601: Recitation 4 Page 7 of 12 06/16/2022

1. Word Embedding Based Representation

(a) Word embeddings are reduced dimension vector representations (features) of words.
Given a single word in the dictionary, word embeddings can convert it to a vector
of fixed dimension. In Homework 4, we will provide a dictionary file specifying
pre-computed mappings between every word in Vocab and their corresponding
word embeddings. To facilitate better understanding towards word embeddings, we
produce a plot showing the spatial relationship between several sample words from
the vocabulary used in Homework 4, with their corresponding word embeddings
(reduced to 2D vectors from 300D vectors using a technique called PCA we will
learn about later in this course!):

0.2 0.4 0.6 0.8 1.0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

innocent
amazingly

dream­like

better

superb

delightful

filthymess

kidnapping
stolen

murderers

Figure 1: Visualization of word embeddings. We select a few positive words (shown in
green) and a few negative words (shown in red). To make the plot, we map the high-
dimensional word representations of these words to 2D space using PCA and then visualize
them in the scatter plot above.

Please comment on your observations and findings based on this plot.

10-301/601: Recitation 4 Page 8 of 12 06/16/2022

(b) Now, we much translate these word embeddings to sentence embeddings (a vector
representing the sentence as a whole). One approach to building a sentence embed-
ding is to average out the vector representation of every word in the sentence that is
in the dictionary. For example, given text “a hot dog flies like a sandwich”,
we can find the sentence embedding for this text by taking the average of the vector
representation of the words “a”, “hot”, “a”, and “sandwich”.

Now suppose we have the following word embedding dictionary for building sen-
tence embeddings (this is a toy example used for illustrative purposes; actual word
embeddings will have higher dimensions than this example):

dictionary = {

"the": [0.2, 0.3],

"square": [0.8, 0.9],

"hot": [0.1, -0.2],

"is": [0.1, 0.1],

"not": [-0.2, -0.3],

"a": [0.0, 0.0],

"happy": [0.4, 0.4],

"sandwich": [0.2, -0.3]

}

Write the word embedding based representation of the sample text define above,
repeated here for convenience:

a hot dog is not a sandwich because it is not square (2)

10-301/601: Recitation 4 Page 9 of 12 06/16/2022

4 Gradient Descent and Stochastic Gradient Descent

Now we will compare two different optimization methods using pseudocode. Consider a
model with parameter θ ∈ RM being trained with a design matrix X ∈ RN×M and labels
y ∈ RN . Say we update θ using the objective function J(θ|X,y) = 1

N

∑N
i=1 J

(i)(θ|x(i), y(i)) ∈
R. Recall that an epoch refers to one complete cycle through the dataset.

(a) Complete the pseudocode for gradient descent.

def dJ(theta, X, y, i):

(omitted) # Returns ∂J (i)(θ|x(i), y(i))/∂θ
You may call this function in your pseudocode.

def GD(theta, X, y, learning_rate):

for epoch in range(num_epoch):

Complete this section with the update rule

return theta # return the updated theta

(b) Complete the pseudocode for stochastic gradient descent that samples without replace-
ment.

def dJ(theta, X, y, i):

(omitted) # Returns ∂J (i)(θ|x(i), y(i))/∂θ
You may call this function in your pseudocode.

def SGD(theta, X, y, learning_rate):

for epoch in range(num_epoch):

indices = shuffle(range(len(X)))

for i in indices:

Complete this section with the update rule

return theta # return the updated theta

10-301/601: Recitation 4 Page 10 of 12 06/16/2022

5 The Need For Speed: Vectorization and Numpy

Performing mathematical operations on vectors and matrices is ubiquitous in most machine
learning algorithms. Whether it’s a simple similarity measure that works by calculating the
dot product between two vectors, or deep neural networks, they all involve repeated matrix
operations. This makes it imperative that our underlying code design to perform matrix
operations is efficient.

5.1 The Perils of Python

While Python is widely the language of choice for machine learning researchers across the
globe (thanks to the speed of development and code readability it offers and the support
it enjoys from the open-source community), Python as a high-level language on average is
much slower than a lower level language like C++. To combat this, libraries like numpy and
scipy implement most of the back-end operations they perform in C/C++, while providing
wrappers in Python to be able to call underlying C code seamlessly from a Python script.

5.2 Speed Comparison: Numpy and Python

We highly recommend you to use numpy extensively in this course, it will be difficult to pass
the programming portion of Homework 4 without writing most of your matrix operations in
numpy. In this section, we’ll see why. Please refer to this Google Colab notebook for demos
and example operations.

Consider you have two vectors a, b ∈ Rn. To see how similar they are, as measured by the
cosine angle between them, you want to compute their dot product. This translates to the
following operation:

a · b = a1b1 + a2b2 + ...+ anbn

When translated to code, notice how the dot product in NumPy is a whopping 100x faster
than the native Python!

from timeit import timeit

import numpy as np

import array

VECTOR_SIZE = int(1e8)

NumPy arrays

a = np.random.rand(VECTOR_SIZE)

b = np.random.rand(VECTOR_SIZE)

Python arrays

aArr = array.array(’d’, a)

bArr = array.array(’d’, b)

https://colab.research.google.com/drive/1Iue_N28TteLVuhjl7NGvRKaqf33WHgz9?usp=sharing

10-301/601: Recitation 4 Page 11 of 12 06/16/2022

def test_np():

return np.dot(a, b)

faster than multiprocessing, python lists, or numpy arrays with python loops

faster than using a range and indexing

def test_py_arr():

return sum(x * y for x, y in zip(aArr, bArr))

def time_dot_product(f):

return timeit(f, setup=f, number=5) / 5

if __name__ == "__main__":

print(f"NumPy = {time_dot_product(test_np):.2f}") # 0.05s

print(f"Python on an array = {time_dot_product(test_py_arr):.2f}") # 5.45s

5.3 Useful Numpy Operations

Some operations in numpy that you will find really useful in your assignments are:

• np.matmul: Matrix multiplication of two matrices

• np.unique: Returns unique elements along an axis.

• np.hstack: Stack two arrays horizontally (column-wise)

• np.expand dims: Convert a row vector of size n into a matrix of size n ∗ 1 or 1 ∗ n

• np.log, np.sum, np.exp, and so on...

Other than the Colab notebook, you can also read these two tutorials (beginner, interme-
diate) from the official numpy website. For instance, understanding broadcasting is recom-
mended. It will help you debug the shape errors you might face in all future homeworks.

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.unique.html
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/basics.html
https://numpy.org/doc/stable/user/basics.html

10-301/601: Recitation 4 Page 12 of 12 06/16/2022

6 Logistic Regression: Toy Example

Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

(a) What is J(θ) of above data given initial θ =

−2
2
1

?

(b) Calculate ∂J(1)(θ)
∂θ1

, ∂J
(1)(θ)
∂θ2

and ∂J(1)(θ)
∂θ3

for first training example. Note that σ(3) ≈ 0.95.

(c) Calculate ∂J(2)(θ)
∂θ1

, ∂J
(2)(θ)
∂θ2

and ∂J(2)(θ)
∂θ3

for second training example. Note that σ(−1) ≈
0.25.

(d) Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what are
the updated parameters θ if we update θ using the second training example?

(e) What is the new J(θ) after doing the above update? Should it decrease or increase?

(f) Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier output
following this update?

	Parameter Derivation Practice
	Binary Logistic Regression
	Feature Representation for Sentiment Classification
	Gradient Descent and Stochastic Gradient Descent
	The Need For Speed: Vectorization and Numpy
	The Perils of Python
	Speed Comparison: Numpy and Python
	Useful Numpy Operations

	Logistic Regression: Toy Example

