Recitation 1 Background

10-301/10-601: Introduction to Machine Learning

09/02/2022

1 NumPy and Workflow

NumPy Notebook
Workflow Presentation
Logging Notebook

2 Vectors, Matrices, and Geometry

1. Inner Product: $\mathbf{u}=\left[\begin{array}{lll}6 & 1 & 2\end{array}\right]^{T}, \mathbf{v}=\left[\begin{array}{lll}3 & -10 & -2\end{array}\right]^{T}$, what is the inner product of \mathbf{u} and \mathbf{v} ? What is the geometric interpretation?
2. Cauchy-Schwarz inequality (Optional): Given $\mathbf{u}=\left[\begin{array}{lll}3 & 1 & 2\end{array}\right]^{T}, \mathbf{v}=\left[\begin{array}{lll}3 & -1 & 4\end{array}\right]^{T}$, what is $\|\mathbf{u}\|_{2}$ and $\|\mathbf{v}\|_{2}$? What is $\mathbf{u} \cdot \mathbf{v}$? How do $\mathbf{u} \cdot \mathbf{v}$ and $\|\mathbf{u}\|_{2}\|\mathbf{v}\|_{2}$ compare? Is this always true?
3. Matrix algebra. Generally, if $\mathbf{A} \in \mathbb{R}^{M \times N}$ and $\mathbf{B} \in \mathbb{R}^{N \times P}$, then $\mathbf{A B} \in \mathbb{R}^{M \times P}$ and $(A B)_{i j}=\sum_{k} A_{i k} B_{k j}$.
Given $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 2 & 2 \\ 0 & 0 & 4\end{array}\right], \mathbf{B}=\left[\begin{array}{ccc}4 & -3 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 2\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 5\end{array}\right], \mathbf{v}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.

- What is $\mathbf{A B}$? Does $\mathbf{B A}=\mathbf{A B}$? What is $\mathbf{B u}$?
- What is rank of A?
- What is \mathbf{A}^{T} ?
- Calculate $\mathbf{u v}^{T}$.
- What are the eigenvalues of \mathbf{A} ?

4. Geometry: Given a line $2 x+y=2$ in the two-dimensional plane,

- If a given point (α, β) satisfies $2 \alpha+\beta>2$, where does it lie relative to the line?
- What is the relationship of vector $\mathbf{v}=[2,1]^{T}$ to this line?
- What is the distance from origin to this line?

3 CS Fundamentals

1. For each (f, g) functions below, is $f(n) \in \mathcal{O}(g(n))$ or $g(n) \in \mathcal{O}(f(n))$ or both?

- $f(n)=\log _{2}(n), g(n)=\log _{3}(n)$
- $f(n)=2^{n}, g(n)=3^{n}$
- $f(n)=\frac{n}{50}, g(n)=\log _{10}(n)$
- $f(n)=n^{2}, g(n)=2^{n}$

2. Find the DFS Pre-Order, In-Order, Post-Order and BFS traversal of the following binary tree. What are the time complexities of the traversals?

4 Calculus

1. If $f(x)=x^{3} e^{x}$, find $f^{\prime}(x)$.
2. If $f(x)=e^{x}, g(x)=4 x^{2}+2$, find $h^{\prime}(x)$, where $h(x)=f(g(x))$.
3. If $f(x, y)=y \log (1-x)+(1-y) \log (x), x \in(0,1)$, evaluate $\frac{\partial f(x, y)}{\partial x}$ at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.
4. Find $\frac{\partial}{\partial w_{j}} \mathbf{x}^{T} \mathbf{w}$, where \mathbf{x} and \mathbf{w} are M-dimensional real-valued vectors and $1 \leq j \leq M$.

5 Probability and Statistics

You should be familiar with event notations for probabilities, i.e. $P(A \cup B)$ and $P(A \cap B)$, where A and B are binary events.

In this class, however, we will mainly be dealing with random variable notations, where A and B are random variables that can take on different states, i.e. a_{1}, a_{2}, and b_{1}, b_{2}, respectively. Below are some notation equivalents, as well as basic probability rules to keep in mind.

- $P\left(A=a_{1} \cap B=b_{1}\right)=P\left(A=a_{1}, B=b_{1}\right)=p\left(a_{1}, b_{1}\right)$
- $P\left(A=a_{1} \cup B=b_{1}\right)=\sum_{b \in B} p\left(a_{1}, b\right)+\sum_{a \in A} p\left(a, b_{1}\right)-p\left(a_{1}, b_{1}\right)$
- $p\left(a_{1} \mid b_{1}\right)=\frac{p\left(a_{1}, b_{1}\right)}{p\left(b_{1}\right)}$
- $p\left(a_{1}\right)=\sum_{b \in B} p\left(a_{1}, b\right)$

1. Two random variables, A and B , each can take on two values, a_{1}, a_{2}, and b_{1}, b_{2}, respectively. a_{1} and b_{2} are considered disjoint (mutually exclusive). $P\left(A=a_{1}\right)=0.5$, $P\left(B=b_{2}\right)=0.5$.

- What is $p\left(a_{1}, b_{2}\right)$?
- What is $p\left(a_{1}, b_{1}\right)$?
- What is $p\left(a_{1} \mid b_{2}\right)$?

2. Now, instead, a_{1} and b_{2} are not disjoint, but the two random variables A and B are independent.

- What is $p\left(a_{1}, b_{2}\right)$?
- What is $p\left(a_{1}, b_{1}\right)$?
- What is $p\left(a_{1} \mid b_{2}\right)$?

3. A student is looking at her activity tracker (Fitbit/Apple Watch) data and she notices that she seems to sleep better on days that she exercises. They observe the following:

Exercise Good Sleep Probability

yes	yes	0.3
yes	no	0.2
no	no	0.4
no	yes	0.1

- What is the $P($ GoodSleep $=$ yes \mid Exercise $=$ yes $)$?
- Why doesn't $P($ GoodSleep $=$ yes, Exercise $=$ yes $)=P($ GoodSleep $=$ yes $)$. $P($ Exercise $=$ yes $)$?
- The student merges her activity tracker data with her food logs and finds that the $P($ Eatwell $=$ yes \mid Exercise $=$ yes, GoodSleep $=$ yes $)$ is 0.25 . What is the probability of all three happening on the same day?

4. What is the expectation of X where X is a single roll of a fair 6 -sided dice $(S=$ $\{1,2,3,4,5,6\})$? What is the variance of X ?
5. Imagine that we had a new dice where the sides were $S=\{3,4,5,6,7,8\}$. How do the expectation and the variance compare to our original dice?
