Section A: HMMs + BayesNets

Viterbi Algorithm (edge weights)

- \(e_t \) \(\rightarrow \) \(T \rightarrow T+1 \)
- \(\Delta \)
- \(\Delta \)
- \(\Delta \)

For \(t = 1, ..., T+1 \):
- For \(k = 1, ..., K \):
 - \(W_t(k) = \max_{j \in \{1, ..., K\}} \{ W_{t-1}(j) s_{jkt} \} \)
 - \(b_t(k) = \text{argmax}_{j \in \{1, ..., K\}} \{ W_{t-1}(j) s_{jkt} \} \)

Example: Senate Race in PA

- \(F = 1 \Rightarrow \) Fetterman beats O2
- \(B = 1 \Rightarrow \) politics is boring
- \(C = 1 \Rightarrow \) voters are finally Gavin
- \(L = 1 \Rightarrow \) voters are finally Liberal
- \(S = 1 \Rightarrow \) politics is Sensationalized
- \(D = 1 \Rightarrow \) voters are concerned about Fetterman's disability
- \(E = 1 \Rightarrow \) voters are concerned about O2's explanation of how w/ disabilities
- \(M = 1 \Rightarrow \) millennials are involved

Question: How to represent \(P(F, B, C, L, S, D, E) \)?

Idea #1: Chain Rule

\[
\]

Con: not very compact

Idea #2: Full Joint Table

<table>
<thead>
<tr>
<th>F</th>
<th>B</th>
<th>C</th>
<th>L</th>
<th>S</th>
<th>D</th>
<th>E</th>
<th>(p(*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\Theta_1)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\Theta_2)</td>
</tr>
</tbody>
</table>

Con: not very compact
Idea #3: Complete Independence

\[P(F, B, \ldots, E) > P(F)P(B) \ldots P(E) \]
- **Pros:** compact
- **Cons:** not very expensive

Idea #4: Naive Bayes

\[P(F, B, \ldots, E) = P(B|F) \ldots P(E|F)P(F) \]

Idea #5: Bayesian Network

Proof of Cond. Indep.

Case #1: Cascade

\[p(x, z|y) = \frac{p(x, y, z)}{p(y)} \]
\[= \frac{p(x|y)p(y|z)P(z)}{p(y)} \]
\[= \frac{p(x|y)p(z|y)p(y)}{p(y)} \]
\[= p(x|y)p(z|y) \]
\[\Rightarrow x \perp z \mid y \]

Case #2: Common Parent \(\Rightarrow \) left as exercise

Case #3: V-structure

\[w_m - w'_m = f(\hat{y}(i) - P(y=1|x(i))) \cdot x(i) \]
\[
\omega_m = \omega_m - \delta \left(y^{(i)} - \frac{\mathcal{P}(y=1|x^{(i)})}{\mathcal{P}(y=0|x^{(i)})} x^{(i)} \right)
\]

\[
\sigma(\omega^T x + b)
\]

Likelihood:

\[
p(D | \theta) \propto \prod_{i=1}^{N} p(x^{(i)} | \theta) \prod_{i=1}^{N} p(y^{(i)} | x^{(i)}, \theta)
\]

\[
L_{y,x}(\theta)
\]

Conditional Likelihood:

\[
p(y_2 = n | x_1, x_2, x_3) = \sum_{y_1} \sum_{y_3} p(y_1, y_2 = n | x_1, x_2, x_3)
\]

\[
= \sum_{y_1} \sum_{y_3} p(y_1, y_2 = n | y_3 = y_3 | x_1, x_2, x_3)
\]

\[
= \sum_{y_1} \sum_{y_3} p(y_1, y_2 = n | y_3 = y_3 | x_1, x_2, x_3)
\]
\[p(y_2 | x_1, x_2, x_3) = \sum_{y_1} \sum_{y_3} p(y_1, y_2, y_3 | x_1, x_2, x_3) \]

\[= \sum_{y_1} \sum_{y_2} \sum_{x_4} \sum_{x_5} p(y_1, y_2, y_3, x_4, x_5 | x_1, x_2, x_3) \]

\[\neq p(y_2 | x_1, x_2, x_3, x_4, x_5) \]

\[A \perp B | C \]

\[p(A, B, C, D, E) = p(A | C) p(B | C) p(C | D, E) p(D) p(E) \]

\[\frac{\partial h}{\partial w} \in \mathbb{M} \]

\[w \in \mathbb{R}^{M \times D} \]

\[\frac{\partial h_i}{\partial x_j} = \mathbb{N}(i, j) \]

\[x \in \mathbb{R}^N \]

\[\tilde{g} = s(t \cdot (x)) = o(x) \]

\[\frac{\partial h_i}{\partial x_i} = h_i (1 - h_i) \]