

boundary that it indues.

Sayes Optimal Christiner Assume M=1 and we know p*(y/x) $l(\hat{q}, y^*) = I(\hat{q} \neq y^*)$ $AL(\vec{x}, \hat{y}) = \underbrace{\xi}_{y'} \beta(y'|\hat{x}) \lambda(\hat{y}, y')$ Buyes Classifier $h(\vec{x}) = argmin AL(x, \hat{y})$ = 99min \ p*(y'/x) 1(\hat{y} \neq y') = ammx - \ \ p*(y'|\(\frac{1}{x}\) \ \ \ (\hat{g} \neq y') = $\underset{\hat{y}'}{\operatorname{argmax}} \underset{y'}{\mathcal{E}} p^*(y'/x) \mathcal{I}(\hat{y} = y')$ $= \operatorname{agm}_{\hat{\mathbf{y}}} \quad p^*(\hat{\mathbf{y}}|\hat{\mathbf{x}}) >$

II (proposition) = [if prop ister $S(\hat{y}, y^*) = [if \hat{y} \neq y^*]$ $S(\hat{y}, y^*) = [if \hat{y} \neq y^*]$ I will if $\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if <math>\hat{y} \neq y^*$ $S(\hat{y}, y^*) = [will if \hat{y} \neq y^*]$ of the proposition of the property of