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Q & A:

Where does 
the 𝑂 𝑛!
computational 
complexity for 
matrix 
inversion come 
from? 

� And that other number you quoted for that matter? 

9/28/22 2Source: https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations

https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations


Front Matter

� Announcements: 

� HW3 released 9/21, due 9/28 (today!) at 11:59 PM 

� Only two grace days allowed on HW3

� HW3 exit poll has also been released: you have 

until one week from the due date to complete it

� Exam 1 on 10/4 (one week from yesterday) from 

6:30 PM - 8:30 PM

� Exam 1 practice problems released on the 

course website, under Coursework

� Lecture instead of recitation this Friday (9/30)
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑓 𝑥 $ |𝜃
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Log-Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 # of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑝 𝑥 $ |𝜃 ==
$%"

#

log 𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function 

(pdf) 𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log7
$%"

#

𝑓 𝑥 $ |𝜃 ==
$%"

#

log 𝑓 𝑥 $ |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 

9/28/22 7Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 0.5,
𝑥 & = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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>
?

𝑥 " = 2,
𝑥 & = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

https://en.wikipedia.org/wiki/Exponential_distribution


� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the likelihood is

𝐿 𝜆 =7
$%"

#

𝑓 𝑥 $ |𝜆 =7
$%"

#

𝜆𝑒'() !

ℓ 𝜆 = =
*%"

#

log 𝜆 + log 𝑒'() " = 𝑁 log 𝜆 − 𝜆=
*%"

#

𝑥 *

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
*%"

#

𝑥 *

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 ==
$%"

#

log 𝑓 𝑥 $ |𝜆 ==
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 ==
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
*%"

#

𝑥 *

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 ==
$%"

#

log 𝑓 𝑥 $ |𝜆 ==
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 ==
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=
*%"

#

𝑥 *

Okay, but now 
what? 

How do we 
actually find 
the best value 
for the 
parameter, 𝜆?
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 ==
$%"

#

log 𝑓 𝑥 $ |𝜆 ==
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 ==
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−=

$%"

#

𝑥 $

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 ==
$%"

#

log 𝑓 𝑥 $ |𝜆 ==
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 ==
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆=
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
K𝜆
−=

$%"

#

𝑥 $ = 0 →
𝑁
K𝜆
==

$%"

#

𝑥 $ → K𝜆 =
𝑁

∑$%"# 𝑥 $

Exponential 
Distribution
MLE
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Building a 
Probabilistic 
Classifier

9/28/22 15

� Define a decision rule

� Given a test data point 𝒙+, predict its label M𝑦 using 
the posterior distribution 𝑃 𝑌 = 𝑦 𝒙′

� Common choice: M𝑦 = argmax
,

𝑃 𝑌 = 𝑦 𝒙′

� Idea: model 𝑃 𝑌 𝒙 as some parametric function of 𝒙



� Suppose we have binary labels 𝑦 ∈ {0,1} and 

𝐷-dimensional inputs 𝒙 = 1, 𝑥", … , 𝑥- . ∈ ℝ-/"

� Assume

𝑃 𝑌 = 1 𝒙, 𝜽 = 𝜎 𝜽.𝒙 =
1

1 + exp −𝜽.𝒙
=

exp 𝜽.𝒙
exp 𝜽.𝒙 + 1

� This implies two useful facts:

1. 𝑃 𝑌 = 0 𝒙, 𝜽 = 1 − 𝑃 𝑌 = 1 𝒙, 𝜽 =
1

exp 𝜽.𝒙 + 1

2.
𝑃 𝑌 = 1 𝒙, 𝜽
𝑃(𝑌 = 0|𝒙, 𝜽)

= exp 𝜽.𝒙 → log
𝑃 𝑌 = 1 𝒙, 𝜽
𝑃(𝑌 = 0|𝒙, 𝜽)

= 𝜽.𝒙

Modelling the 
Posterior

9/28/22 16

1 prepended to 𝒙



Logistic 
Function

179/28/22 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg

𝜎
𝑧
=

1
1
+
𝑒'

0
𝑧

https://en.wikipedia.org/wiki/Logistic_function


� Differentiable everywhere
� 𝜎:ℝ → 0, 1
� The decision boundary is linear in 𝒙!  

189/28/22 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg

Why use the 
Logistic 
Function?

𝜎
𝜽.
𝒙

𝜽.𝒙

https://en.wikipedia.org/wiki/Logistic_function


Logistic 
Regression 
Decision 
Boundary

19

M𝑦 = `1 if 𝑃 𝑌 = 1 𝒙, 𝜽 ≥
1
2

0 otherwise.

𝑃 𝑌 = 1 𝒙 = 𝜎 𝜽.𝒙 =
1

1 + exp −𝜽.𝒙
≥
1
2

2 ≥ 1 + exp −𝜽.𝒙

1 ≥ exp −𝜽.𝒙

log 1 ≥ −𝜽.𝒙

0 ≤ 𝜽.𝒙

9/28/22



Logistic 
Regression 
Decision 
Boundary

209/28/22 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

219/28/22 Figure courtesy of Matt Gormley



Logistic 
Regression 
Decision 
Boundary

229/28/22 Figure courtesy of Matt Gormley



Setting the 
Parameters
via Minimum 
Negative 
Conditional 
(log-)Likelihood 
Estimation 
(MCLE)

239/28/22

� Find 𝜽 that minimizes

ℓ 𝜽 = −log𝑃 𝑦 ! , … , 𝑦 " 𝒙 ! , … , 𝒙 " , 𝜽 = −log-
#$!

"

𝑃 𝑦 # 𝒙 # , 𝜽

ℓ 𝜽 = −log-
#$!

"

𝑃 𝑌 = 1 𝒙 # , 𝜽
% !

𝑃 𝑌 = 0 𝒙 # , 𝜽
!&% !

ℓ 𝜽 = −1
#$!

"

𝑦 # log 𝑃 𝑌 = 1 𝒙 # , 𝜽 + 1 − 𝑦 # log 𝑃 𝑌 = 0 𝒙 # , 𝜽

ℓ 𝜽 = −1
#$!

"

𝑦 # log
𝑃 𝑌 = 1 𝒙 # , 𝜽
𝑃 𝑌 = 0 𝒙 # , 𝜽

+ log𝑃 𝑌 = 0 𝒙 # , 𝜽

ℓ 𝜽 = −1
#$!

"

𝑦 # 𝜽'𝒙 # − log 1 + exp 𝜽'𝒙 #

𝐽 𝜽 =
1
𝑁
ℓ 𝜽 = −

1
𝑁
1
#$!

"

𝑦 # 𝜽'𝒙 # − log 1 + exp 𝜽'𝒙 #



Minimizing the
Negative 
Conditional 
(log-)Likelihood

249/28/22

∇𝜽𝐽 𝜽 = −
1
𝑁
=
$%"

#

𝑦 $ ∇𝜽 𝜽.𝒙 $ −∇𝜽 log 1 + exp 𝜽.𝒙 $

= −
1
𝑁
=
$%"

#

𝑦 $ 𝒙 $ −
exp 𝜽.𝒙 $

1 + exp 𝜽.𝒙 $ 𝒙 $

=
1
𝑁
=
$%"

#

𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 − 𝑦 $

𝐽 𝜽 = −
1
𝑁
=
$%"

#

𝑦 $ 𝜽.𝒙 $ − log 1 + exp 𝜽.𝒙 $



Recall:
Gradient 
Descent

259/28/22

Good news: the negative conditional log-likelihood is convex! 

(See HW/recitation)



Recall:
Gradient 
Descent

269/28/22

Good news: the negative conditional log-likelihood is convex! 

(See HW/recitation)



Gradient 
Descent

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 3 =
1
𝑁
=
$%"

#

𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 3 − 𝑦 $

b. Update 𝜽: 𝜽 3/" ← 𝜽 3 − 𝛾∇𝜽𝐽 𝜽 3

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3
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Poll Question 1: 

What is the 
computational 
cost of one 
iteration of 
gradient 
descent for 
logistic 
regression?

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 3 =
1
𝑁
=
$%"

#

𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 3 − 𝑦 $

b. Update 𝜽: 𝜽 3/" ← 𝜽 3 − 𝛾∇𝜽𝐽 𝜽 3

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3

289/28/22

A. 𝑂 1 (TOXIC) B. 𝑂 𝑁 C. 𝑂 𝐷 D. 𝑂 𝑁𝐷



Gradient 
Descent

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝜽𝐽 𝜽 3 =
1
𝑁
=
$%"

#

𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 3 − 𝑦 $

b. Update 𝜽: 𝜽 3/" ← 𝜽 3 − 𝛾∇𝜽𝐽 𝜽 3

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3

29

𝑂(𝑁𝐷)
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Stochastic
Gradient 
Descent (SGD) 

309/28/22

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 $ , 𝑦 $

b. Compute the pointwise gradient:
∇𝜽𝐽 $ 𝜽 3 = 𝒙 $ 𝑃 𝑌 = 1 𝒙 $ , 𝜽 3 − 𝑦 $

c. Update 𝜽: 𝜽 3/" ← 𝜽 3 − 𝛾∇𝜽𝐽 $ 𝜽 3

d. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3



Stochastic
Gradient 
Descent (SGD) 

� If the example is sampled uniformly at random, the expected 

value of the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 $ 𝜽 ==
$%"

#

probability of selecting 𝒙 $ , 𝑦 $ ∇𝜽𝐽 $ 𝜽

𝐸 ∇𝜽𝐽 $ 𝜽 ==
$%"

#
1
𝑁

∇𝜽𝐽 $ 𝜽 =
1
𝑁
=
$%"

#

∇𝜽𝐽 $ 𝜽 = ∇𝜽𝐽 𝜽

� In practice, the data set is randomly shuffled then looped 
through so that each data point is used equally often

319/28/22



Stochastic
Gradient 
Descent (SGD) 

329/28/22

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. For 𝑖 ∈ shufvle 1, … ,𝑁

i. Compute the pointwise gradient:

∇𝜽𝐽 " 𝜽 # = 𝒙 " 𝑃 𝑌 = 1 𝒙 " , 𝜽 # − 𝑦 "

ii. Update 𝜽: 𝜽 #$% ← 𝜽 # − 𝛾∇𝜽𝐽 " 𝜽 #

iii. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3



Wait, have 
we seen 
something like 
this before? 

339/28/22

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

and step size 𝛾

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. For 𝑖 ∈ shufvle 1, … ,𝑁

i. Compute the pointwise gradient:

∇𝜽𝐽 " 𝜽 # = 𝒙 " 𝑃 𝑌 = 1 𝒙 " , 𝜽 # − 𝑦 "

ii. Update 𝜽: 𝜽 #$% ← 𝜽 # − 𝛾∇𝜽𝐽 " 𝜽 #

iii. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝜽 3



Recall: 
Perceptron 
Learning 
Algorithm

9/19/22 34

This is the negative gradient of the hinge loss
𝐽 $ 𝜽 = max 0, 1 − 𝑦 $ 𝜽.𝒙 $

� Input: training dataset 𝒟 = 𝒙 $ , 𝑦 $
$%"
#

1. Initialize 𝜽 2 to all zeros and set 𝑡 = 0

2. While NOT CONVERGED

a. For 𝑡 ∈ shufvle 1, … ,𝑁

i. Predict the label of 𝒙 3 , M𝑦 = sign 𝜽.𝒙 3

ii. Observe its true label, 𝑦 3

iii. If we misclassified 𝒙 3 (𝑦 3 ≠ M𝑦):

𝜽 ← 𝜽 + 𝑦 3 𝒙 3



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

359/28/22

Gradient Descent Stochastic Gradient Descent



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

369/28/22

� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch

� Theoretical comparison:

� Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Method
Steps to 

Convergence
Computation 

per Step

Gradient descent 𝑂 log z1 𝜖 𝑂 𝑁𝐷

SGD 𝑂 z1 𝜖 𝑂 𝐷

(with high probability under certain assumptions)



Stochastic
Gradient 
Descent vs. 
Gradient 
Descent

379/28/22
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SGD

Gradient 
Descent

Empirically, SGD 
reduces the negative 
conditional log-
likelihood much 

faster than gradient 
descent

� An epoch is a single pass through the entire training dataset

� Gradient descent updates the parameters once per epoch

� SGD updates the parameters 𝑁 times per epoch



Optimization 
for ML 
Learning 
Objectives

You should be able to…
� Apply gradient descent to optimize a function
� Apply stochastic gradient descent (SGD) to optimize a 

function
� Apply knowledge of zero derivatives to identify a 

closed-form solution (if one exists) to an optimization 
problem

� Distinguish between convex, concave, and nonconvex 
functions

� Obtain the gradient (and Hessian) of a (twice) 
differentiable function

389/28/22



Logistic 
Regression 
Learning 
Objectives

You should be able to…
� Apply the principle of maximum likelihood estimation 

(MLE) to learn the parameters of a probabilistic 
model 

� Given a discriminative probabilistic model, derive the 
conditional log-likelihood, its gradient, and the 
corresponding Bayes Classifier 

� Explain the practical reasons why we work with the 
log of the likelihood 

� Implement logistic regression for binary (and 
multiclass) classification 

� Prove that the decision boundary of binary logistic 
regression is linear
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