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Q & A: * And that other number you quoted for that matter?

Where does Gauss-ordan o)
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from?

9/28/22 Source: https://en.wikipedia.org/wiki/Computational_complexity _of mathematical operations
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Front Matter

9/28/22

* Announcements:

* HW3 released 9/21, due 9/28 (today!) at 11:59 PM
- Only two grace days allowed on HW3

- HW3 exit poll has also been released: you have

until one week from the due date to complete it

- Exam 1 on 10/4 (one week from yesterday) from

6:30 PM - 8:30 PM

- Exam 1 practice problems released on the

course website, under Coursework

* Lecture instead of recitation this Friday (9/30)


http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*

9/28/22



Likelihood

9/28/22

* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X]0), then the likelihood of D is

N
L@ = | [p(x©16)
=1

* If X is continuous with probability density function
(pdf) f(X]60), then the likelihood of D is

N
L@ = | [r(x©10)
=1



Log-Likelihood

9/28/22

* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
£(0) = logl_[p(x(i)|9) = z logp(x(i)|9)
i=1 =1

* If X is continuous with probability density function
(pdf) f(X]60), then the log-likelihood of D is

N N
20) =log| [ r(x®10) = ) logf(x©|0)
i=1 =1



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | =05 ]
- Example: the 125 ) — =1 |
A=15
exponential 100
o . 5ot
distribution = .
0.25-\
0.00 | . . . .
0 1 2 3 4 )

x

Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | =05 ]
- Example: the 125} — =1 |
A=1.5
exponential 100
_— . S0} (D —
distribution % {x 0.5,
0.50
0.25
0.00 f ,
4 )

Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | =05 ]
- Example: the 125} — =1 |
A=1.5
exponential 100 '
L. ) ot 1 (1) _

distribution ~ {x 2,

0.50 .
\ x(Z) — 3}

0.25 F .

0.00 f , ,
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x

Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Exponential

Distribution
MLE

9/28/22

* The pdf of the exponential distribution is
f(x|2) = 26~

* Given N iid samples {x(l), ...,x(N)}, the likelihood is

N N
L(A) — Hf(x(l)l/l) — Hle—ﬂx(i)
i=1 =1

10



* The pdf of the exponential distribution is
f(x|2) = 26~

* Given N iid samples {x(l), ...,x(N)}, the log-likelihood is

N N
@) = ) logf(xD12) = ) log e
i=1 i=1

Exponential

Distribution . .
IMILE =Zlog/1+loge"1x(i) = Nlog)l—AZx(i)
i=1 =1

9/28/22
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Okay, but now
what?

How do we

actually find
the best value
for the
parameter, A?
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l), ...,x(N)}, the log-likelihood is

N N
@) = ) logf(xD12) = ) log e
i=1 i=1

N N
= z log A + log e = N log A — Az x@W
i=1 =1

12



Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l), ...,x(N)}, the log-likelihood is

N N
@) = ) logf(xD12) = ) log e
i=1 i=1

N N
= z log A + log e = N log A — Az x@W
i=1 =1

- Taking the partial derivative and setting it equal to O gives

¢ N

_N N0
o1 1 x

=1

13



Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l), ...,x(N)}, the log-likelihood is

N N
@) = ) logf(xD12) = ) log e
i=1 i=1

N N
= z log A + log e = N log A — Az x@W
i=1 =1

- Taking the partial derivative and setting it equal to O gives

N N

N . N . . N
—A—zx(l)=0—>7=zx(l)_)/1= N j
1« A 4 g x

=1 =1
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Building a
Probabilistic

Classifier
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* Define a decision rule

- Given a test data point x’, predict its label ¥ using

the posterior distribution P(Y = y|x')

* Common choice: y = argmax P(Y = y|x')
y

* |dea: model P(Y|x) as some parametric function of x

15



Modelling the

Posterior
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* Suppose we have binary labels y € {0,1} and

D-dimensional inputs x = [1, x4, ..., xp]! € RP*1

- Assume  TTTmmeee- 1 prepended to x

1 _ exp(0'x)
1+ exp(—0Tx) exp(0Tx) +1

P(Y =1|x,0) = a(07x) =

* This implies two useful facts:

1. P(Y =0[x,0) =1-P(Y =1|x,0) =
( |, 6) ( %,6) exp(07x) +1

P(Y =1|x,0)
2. = T
P(Y =0x9) PO X —log

P(Y =1|x,0)
P(Y=0|x,0)

07 x

16
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9/28/22 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg
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Why use the

Logistic
Function?

9/28/22

[

.
N 0.5
>
\—r
o
6 -4 -2 0
0T x

* Differentiable everywhere
0:R - [0,1]
* The decision boundary is linear in x!

Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Loqgistic-curve.svg

18


https://en.wikipedia.org/wiki/Logistic_function

Logistic
Regression
Decision
Boundary

9/28/22

<

A

‘

1
1ifP(Y =1|x,0) > 5

0 otherwise.
1 1

P(Y =1|x) = a(0Tx) = [T o (=070 > 5

2>1+exp(—07x)
1 > exp(—0Tx)
log(1) > —0"x

0<0Tx

19



Logistic
Regression
Decision
Boundary
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Figure courtesy of Matt Gormley
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Logistic
Regression
Decision
Boundary
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Logistic Regression Distribution

Figure courtesy of Matt Gormley
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Classification with Logistic Regression

_ogistic
Regression
Decision

Boundary

9/28/22 Figure courtesy of Matt Gormley



Setting the
Parameters
via Minimum
Negative

Conditional
(log-)Likelihood
Estimation
(MCLE)

9/28/22

Find @ that minimizes

£(0) = —logP(y(l), ...,y(N)|x(1), ...,x(N),B) = —log P(y(i)|x(i),9)
11

N .
. (D) . —y®
= —log[ [P(r = 1[x®,0)"" (p(r = 0]x®,0))

i=1

zy(‘) logP(Y = 1|x(‘) 0)+(1- y(‘)) logP(Y = O|x(‘) 0)
i=1

y® logP(Y — 1|x(l:)r 0)
P(Y = 0[x®, 9)

||
Mz

+ log P(Y = O|x(i), 0)
i=1

II
.MZ

Il
[

yDeTx® —log (1 -+ exp(BTx(i)))

l

N
1 R |
J(6) = Nf(e) = _Nz y@DeTx® —og (1 + exp(BTx(‘)))

=1 23



N
1 o |
J(0) = — NZ yD T x(1) —]og (1 + exp(HTx(‘)))

1=1

N
Minimizing the [ —%Zy“)ve(mx(”) ~Vplog (1 + exp(67x))
Negative =1

l

Conditional
(log-)Likelihood

N T (0)
_lz yDx® _ exp(6”x )_ MO
N . 1+ exp(0Tx®)

N
1 | | |
= NZ x(l)(p(y = 1|x(l), 0) — y(l))
i=1

9/28/22
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Good news: the negative conditional log-likelihood is convex!

(See HW/recitation)
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Recall: :
Gradient 0.4 -
Descent S
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Good news: the negative conditional log-likelihood is convex!

(See HW/recitation)
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Gradient

Descent

9/28/22

. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
VG](Q(t)) — %z x(i)(p(y _ 1|x(i), H(t)) B y(i))
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8

27



Poll Question 1:

What is the
computational
cost of one
iteration of
gradient
descent for
logistic
regression’?

9/28/22

A. 0(1) (TOXIC) B.O(N) C.0(D) D. O(ND)
* Input: training dataset D = {(x(i),y(i))}livzl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
1 . _ _
Vg](e(t)) — NZ x(l)(p(y — 1|x(l), H(t)) _ y(l))
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8

28



Gradient

Descent

9/28/22

. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

N
O(ND){ Ve](B(t)) = %z x(i)(p(y - 1|x(i), g(t)) — y(i))
i=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8

29



Stochastic
Gradient

Descent (SGD)
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. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and sett = 0
2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from D, (x(i),y(i))

b. Compute the pointwise gradient:

Vej(i)(g(t)) - x(i)(p(y — 1|x(i), B(t)) _ y(i))
c. Update 8: 8¢+ « 9(®) — v, ) (g(®)
d. Incrementt:t<t+1

- Qutput: O

30



Stochastic
Gradient

Descent (SGD)
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* If the example is sampled uniformly at random, the expected

value of the pointwise gradient is the same as the full gradient!

N
E|Vg/ (0 0)] = Z(probability of selecting xV, y(i)) Vol D(0)
i=1

N

- z (%) Vol D(0) = %i VoD (6) = Vo] (0)
=1

=1

* In practice, the data set is randomly shuffled then looped

through so that each data point is used equally often

31



Stochastic
Gradient

Descent (SGD)

9/28/22

. i~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied
a. Fori € shuffle({1,...,N})
I.  Compute the pointwise gradient:
v9](0(9<t>) — x(i)(p(y — 1|x(i), g(t)) _ y(i))
i. Update 8: 91 « 9 — v, ] (g1)

iii. Incrementt:t<t+1

- Qutput: O

32



Wait, have
we seen

something like
this before?

9/28/22

. i~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied
a. Fori € shuffle({1,...,N})

-7 I.  Compute the pointwise gradient:
VB](i)(g(t)) — x(i)(p(y — 1|x(i), e(t)) . y(i))
i. Update 8: 0¢+D « 9 —yy, 7D (g®)

iii. Incrementt:t<t+1

- Qutput: O

33



Recall:
Perceptron

Learning
Algorithm

9/19/22

* Input: training dataset D = {(x(i),y(i))}llil

1.

2.

Initialize 0© to all zeros and sett = 0

While NOT CONVERGED

d.

For t € shuffle({1, ..., N})

. Predict the label of xV), § = sign(87x)
ii. Observe its true label, y(®

iii. If we misclassified x(® (y(®) = $):
0 <0 +yOx®

This is the negative gradient of the hinge loss
JO(8) = max(0,1 — y®eTx®)

34



Stochastic
Gradient

Descent vs.

Gradient
Descent
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Gradient Descent

Stochastic Gradient Descent

35



Stochastic
Gradient

Descent vs.

Gradient
Descent

9/28/22

* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

* Theoretical comparison:

- Define convergence to be when ](H(t)) —J(0%) < €

Convergence per Step
Gradientdescent  0(log 1/) O(ND)
SGD o(1/e) 0(D)

\/_/

(with high probability under certain assumptions)

36



Stochastic
Gradient

Descent vs.

Gradient
Descent

9/28/22

* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

A

Gradient Empirically, SGD
Descent reduces the negative
conditional log-
likelihood much

faster than gradient
SGD

Negative conditional
log-likelihood

descent

epochs

37



Optimization
for ML

Learning
Objectives
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You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to optimize a
function

- Apply knowledge of zero derivatives to identify a
closed-form solution (if one exists) to an optimization
problem

- Distinguish between convex, concave, and nonconvex
functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function

38



Logistic
Regression

Learning
Objectives

9/28/22

You should be able to...
* Apply the principle of maximum likelihood estimation

(MLE) to learn the parameters of a probabilistic
model

* Given a discriminative probabilistic model, derive the

conditional log-likelihood, its gradient, and the
corresponding Bayes Classifier

* Explain the practical reasons why we work with the

log of the likelihood

* Implement logistic regression for binary (and

multiclass) classification

* Prove that the decision boundary of binary logistic

regression is linear
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