10-301/601: Introduction

 to Machine Learning Lecture 8 - Optimization for Machine LearningHenry Chai \& Matt Gormley
9/26/22

Q \& A:

The Perceptron mistake bound is so strange, how exactly did we end up with R / γ^{2} ?

- Definitely a fair question: while the proof of the Perceptron mistake bound isn't too complicated, it's also not strictly speaking relevant to the content of our course.
- That being said, Matt has graciously agreed to put together a short (optional) video going through the proof; if you're interested, you can find it here, in our Panopto folder.
- Announcements:
- HW3 released 9/21, due 9/28 at 11:59 PM
- Only two grace days allowed on HW3
- HW3 exit poll has also been released: you have until one week from the due date to complete it
- Exam 1 on 10/4 (one week from tomorrow!) from 6:30 PM - 8:30 PM
- If you have a conflict, you must complete the Exam conflict form by 9/27 (tomorrow!) at 1 PM
- Location \& Seats: You all will be split across multiple (large) rooms.
- Everyone will have an assigned seat
- Please watch Piazza carefully for more details
- If you have exam accommodations through ODR, they will be proctoring your exam on our behalf; you are responsible for submitting the exam proctoring request through your student portal.
- Format of questions:
- Multiple choice
- True / False (with justification)
- Derivations
- Short answers
- Drawing \& Interpreting figures
- Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-size sheet of notes; you can put whatever you want on both sides
- Covered material: Lectures 1 - 7
- Foundations
- Probability, Linear Algebra, Geometry, Calculus
- Optimization
- Important Concepts
- Overfitting
- Model selection / Hyperparameter optimization

Exam 1 Topics

- Decision Trees
- k-NN
- Perceptron
- Regression
- Decision Tree and k-NN Regression
- Linear Regression

Exam 1
 Preparation

- Attend the midterm review lecture (right now!)
- Review the exam practice problems (released 9/22 on the course website, under Coursework)
- Review HWs 1-3
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)
- Solve the easy problems first
- If a problem seems extremely complicated, you might be missing something
- If you make an assumption, write it down
- Don't leave any answer blank
- If you look at a question and don't know the answer: - just start trying things
- consider multiple approaches
- imagine arguing for some answer and see if you like it

Practice
 Problem 1a:
 Decision Trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

Snowstorm	Holiday	Weekend	Closed
T	T	F	F
T	T	F	T
F	T	F	F
T	T	F	F
F	F	F	F
F	F	F	T
T	F	F	T
F	F	F	T

Table 1: Training examples for decision tree

- What would be the effect of the "Weekend" attribute on the decision tree if we made it the root node?

Explain your answer in terms of mutual information

Practice
 Problem 1b: Decision Trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

Snowstorm	Holiday	Weekend	Closed
T	T	F	F
T	T	F	T
F	T	F	F
T	T	F	F
F	F	F	F
F	F	F	T
T	F	F	T
F	F	F	T

Table 1: Training examples for decision tree

- Which attribute would we split on first if we used mutual information as the splitting criterion? You may

$$
\text { use } \log _{2}\left(\frac{3}{4}\right)=-0.4 \text { and } \log _{2}\left(\frac{1}{4}\right)=-2
$$

- Consider the dataset below:

Practice Problem 2: k-NN

- What is the leave-one-out cross-validation error for a 1NN model using the Euclidean distance?
- True or False: Consider two datasets

$$
\begin{aligned}
& \mathcal{D}_{1}=\left\{\left(\boldsymbol{x}_{1}^{(1)}, y_{1}^{(1)}\right),\left(\boldsymbol{x}_{1}^{(2)}, y_{1}^{(2)}\right), \ldots,\left(\boldsymbol{x}_{1}^{\left(N_{1}\right)}, y_{1}^{\left(N_{1}\right)}\right)\right\} \text { and } \\
& \mathcal{D}_{2}=\left\{\left(\boldsymbol{x}_{2}^{(1)}, y_{2}^{(1)}\right),\left(\boldsymbol{x}_{2}^{(2)}, y_{2}^{(2)}\right), \ldots,\left(\boldsymbol{x}_{2}^{\left(N_{2}\right)}, y_{2}^{\left(N_{2}\right)}\right)\right\} \text { where }
\end{aligned}
$$

Practice
 Problem 3:
 Perceptron

The maximum number of mistakes the Perceptron learning algorithm will make on \mathcal{D}_{1} is higher than the maximum number of mistakes it will make on \mathcal{D}_{2}.

- True or False: Consider two datasets
$\mathcal{D}_{1}=\left\{\left(x_{1}^{(1)}, y_{1}^{(1)}\right),\left(x_{1}^{(2)}, y_{1}^{(2)}\right), \ldots,\left(x_{1}^{\left(N_{1}\right)}, y_{1}^{\left(N_{1}\right)}\right)\right\}$ and $\mathcal{D}_{2}=\left\{\left(\boldsymbol{x}_{2}^{(1)}, y_{2}^{(1)}\right),\left(\boldsymbol{x}_{2}^{(2)}, y_{2}^{(2)}\right), \ldots,\left(\boldsymbol{x}_{2}^{\left(N_{2}\right)}, y_{2}^{\left(N_{2}\right)}\right)\right\}$ where $\boldsymbol{x}_{1}^{(i)} \in \mathbb{R}^{d_{1}}$ and $\boldsymbol{x}_{2}^{(i)} \in \mathbb{R}^{d_{2}}$. Suppose $N_{1}>N_{2}$ and $d_{1}>d_{2}$.

Poll Question 1

 The maximum number of mistakes the Perceptron learning algorithm will make on \mathcal{D}_{1} is higher than the maximum number of mistakes it will make on \mathcal{D}_{2}.- True
- False
- True and False (TOXIC)

Practice Problem 4a: Linear Regression

Consider the dataset plotted in the figure below along with the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways: for each new dataset, select the option below that best approximates the new line linear regression would learn

Practice Problem 4b: Linear Regression

Consider the dataset plotted in the figure below along with the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways: for each new dataset, select the option below that best approximates the new line linear regression would learn

Practice Problem 4c: Linear Regression

Consider the dataset plotted in the figure below along with the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways: for each new dataset, select the option below that best approximates the new line linear regression would learn

What questions do you have?

Recall:
 Gradient Descent for Linear Regression

- Gradient descent for linear regression repeatedly takes steps opposite the gradient of the objective function

```
```

Algorithm 1 GD for Linear Regression

```
```

Algorithm 1 GD for Linear Regression
procedure $\operatorname{GDLR}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
procedure $\operatorname{GDLR}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
while not converged do
while not converged do
$\mathbf{g} \leftarrow \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)} \quad \triangleright$ Compute gradient
$\mathbf{g} \leftarrow \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)} \quad \triangleright$ Compute gradient
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g} \quad \triangleright$ Update parameters
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g} \quad \triangleright$ Update parameters
return θ

```
```

 return \(\theta\)
    ```
```

\triangleright Initialize parameters
\triangleright Update parameters

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0 \leq c \leq 1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0 \leq c \leq 1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is strictly convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0<c<1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right)<c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

Convexity

Convexity

Convexity

Convex functions:
Each local minimum is a global minimum!

Non-convex functions:
A local minimum may or may not be a global minimum...

Convexity

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:
A local minimum may or may not be a global minimum...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.01 | 0.02 | 25.2 |
| 2 | 0.30 | 0.12 | 8.7 |
| 3 | 0.51 | 0.30 | 1.5 |
| 4 | 0.59 | 0.43 | 0.2 |

The mean squared error is convex (but not always strictly convex)

$$
J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}
$$

iteration t

Okay, fine

 but couldn't we do something simpler?Yes!
(sometimes)
$J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}$

- Idea: find the critical points of the objective function, specifically the ones where $\nabla J(\theta)=\mathbf{0}$ (the vector of all zeros), and check if any of them are local minima

Closed Form Optimization

- Notation: given training data $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
$X=\left[\begin{array}{cc}1 & x^{(1)^{T}} \\ 1 & x^{(2)^{T}} \\ \vdots & \vdots \\ 1 & x^{(N)^{T}}\end{array}\right]=\left[\begin{array}{cccc}1 & x_{1}^{(1)} & \cdots & x_{D}^{(1)} \\ 1 & x_{1}^{(2)} & \cdots & x_{D}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1}^{(N)} & \cdots & x_{D}^{(N)}\end{array}\right] \in \mathbb{R}^{N \times D+1}$
is the design matrix
- $\boldsymbol{y}=\left[y^{(1)}, \ldots, y^{(N)}\right]^{T} \in \mathbb{R}^{N}$ is the target vector

$$
\begin{aligned}
& J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(y^{(i)}-\boldsymbol{\theta}^{T} \boldsymbol{x}^{(i)}\right)^{2}=\frac{1}{2 N} \sum_{i=1}^{N}\left(\boldsymbol{x}^{(i)^{T}} \boldsymbol{\theta}-y^{(i)}\right)^{2} \\
&= \frac{1}{2 N}(X \theta-\boldsymbol{y})^{T}(X \theta-\boldsymbol{y}) \\
&= \frac{1}{2 N}\left(\boldsymbol{\theta}^{T} X^{T} X \boldsymbol{\theta}-2 \boldsymbol{\theta}^{T} X^{T} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}\right) \\
& \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})= \frac{1}{2 N}\left(2 X^{T} X \boldsymbol{\theta}-2 X^{T} \boldsymbol{y}\right) \\
& \nabla_{\boldsymbol{\theta}} J(\widehat{\boldsymbol{\theta}})=\frac{1}{2 N}\left(2 X^{T} X \widehat{\boldsymbol{\theta}}-2 X^{T} \boldsymbol{y}\right)=0 \\
& \rightarrow X^{T} X \widehat{\boldsymbol{\theta}}=X^{T} \boldsymbol{y} \\
& \rightarrow \widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
\end{aligned}
$$

Minimizing the Mean Squared Error

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

Closed Form

 Optimization

| t | θ_{1} | θ_{2} | $J\left(\theta_{1}, \theta_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.59 | 0.43 | 0.2 |

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

- When $N \gg D+1, X^{T} X$ is (almost always) full rank and therefore, invertible!
- If $X^{T} X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are either 0 or infinitely many solutions!

2. If so, how computationally expensive is inverting $X^{T} X$?

Closed Form Solution

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Poll Question 3

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?
A. -1 (TOXIC)
B. 0
C. 1
D. 2
E. ∞

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

$$
\widehat{\boldsymbol{\theta}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

- When $N \gg D+1, X^{T} X$ is (almost always) full rank and therefore, invertible!
- If $X^{T} X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are either 0 or infinitely many solutions

2. If so, how computationally expensive is inverting $X^{T} X$?

- $X^{T} X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^{T} X$ takes $O\left(D^{3}\right)$ time...
- Computing $X^{T} X$ takes $O\left(N D^{2}\right)$ time
- Can use gradient descent to (potentially) speed things up when N and D are large!

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using gradient descent or closed form optimization
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Identify situations where least squares regression has exactly one solution or infinitely many solutions

