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Q&A:

The Perceptron
mistake bound

IS SO strange,
how exactly
did we end up

with (R/y)??
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* Definitely a fair question: while the proof of the

Perceptron mistake bound isn’t too complicated, it’s

also not strictly speaking relevant to the content of our

course.

* That being said, Matt has graciously agreed to put

together a short (optional) video going through the

proof; if you're interested, you can find it here, in our

Panopto folder.


https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=40cf1588-5e37-4082-9cf2-af1c011d294f

Front Matter
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* Announcements:

* HW3 released 9/21, due 9/28 at 11:59 PM
* Only two grace days allowed on HW3

- HW3 exit poll has also been released: you have

until one week from the due date to complete it

* Exam 1 on 10/4 (one week from tomorrow!) from
6:30 PM - 8:30 PM

* If you have a conflict, you must complete the

Exam conflict form by 9/27 (tomorrow!) at 1 PM



https://forms.gle/61cqb2ZN1BuQ9Pgd8

* Location & Seats: You all will be split across multiple

(large) rooms.

* Everyone will have an assigned seat

Exam 1 - Please watch Piazza carefully for more details

LOgIStICS * If you have exam accommodations through ODR,

they will be proctoring your exam on our behalf;

you are responsible for submitting the exam

proctoring request through your student portal.
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* Format of questions:

* Multiple choice
* True / False (with justification)

* Derivations

Exam 1 * Short answers

Logistics * Drawing & Interpreting figures

 Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-size sheet of notes;
you can put whatever you want on both sides
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* Covered material: Lectures 1 —7
* Foundations

* Probability, Linear Algebra, Geometry, Calculus
* Optimization

* Important Concepts
* Overfitting

- Model selection / Hyperparameter optimization

* Decision Trees

* k-NN

* Perceptron

* Regression
* Decision Tree and k-NN Regression
* Linear Regression
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Exam 1

Preparation
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* Attend the midterm review lecture (right now!)

* Review the exam practice problems (released 9/22 on

the course website, under Coursework)

* Review HWs 1 -3

 Consider whether you have achieved the “learning

objectives” for each lecture / section

- Write your one-page cheat sheet (back and front)


http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

* Solve the easy problems first

* If a problem seems extremely complicated, you might be

missing something
* If you make an assumption, write it down

* Don’t leave any answer blank
* If you look at a question and don’t know the answer:
* just start trying things
- consider multiple approaches

* imagine arguing for some answer and see if you like it
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Practice
Problem 1a:
Decision Trees
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we

have the training examples described in the Table 5.2.

Snowstorm

Holiday

Weekend

Closed

T

T

F

F

Table 1: Training examples for decision tree

- What would be the effect of the “Weekend” attribute
on the decision tree if we made it the root node?

O label

Explain your answer in terms of mutual information




Practice
Problem 1b:
Decision Trees
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Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we

have the training examples described in the Table 5.2.

Snowstorm Holiday Weekend

Closed

— T T F
=
=

-

T
F
T
F
F
T
F

F

e
/
=
y—

Table 1: Training examples for decision tree

* Which attribute would we split on first if we used

mutual information as the splitting criterion? You may

use log, G) = —0.4 and log, G) = —2




* Consider the dataset below:

r

Practice

Problem 2:
k-NN

N = 3 0 O

4
,

- What is the leave-one-out cross-validation error for a 1-
NN model using the Euclidean distance?
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Practice
Problem 3:

Perceptron
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* True or False: Consider two datasets

= {(x2,5®), (x@,9@), ., (xM, M)} anc

D, = {(xgl),yz(l)) , (xgz)’yz(z)) ) e (ngZ),yz(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on Dy is higher than the maximum
number of mistakes it will make on D,.




Poll Question 1
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o 2oble
\ - yoosep

* True or False: Consider two datasets

= {(x2,5®), (x@,9@), ., (xM, M)} anc

D, = {(xgl),yz(l)) , (xgz)’yz(z)) ) e (ngZ),yz(NZ))} where

xgi) € R% and xgi) € R%. Suppose N; > N, and d; > d,.
The maximum number of mistakes the Perceptron learning
algorithm will make on Dy is higher than the maximum
number of mistakes it will make on D,.

A. True
B. False

C. True and False (TOXIC)



Practice

Problem 4a:

Linear
Regression
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Consider the dataset plotted in the figure below along with
the line learned by linear regression.

- . . .
v - . .
- .
N . .
.
t.
.
. ' '
" . : : - . -

Kh
v

Now suppose we slightly alter the dataset in different ways:
for each new dataset, select the option below that best
approximates the new line linear regression would learn

Observed data « Observed data « Obseved data
Linear regression prediiction o Linear regression prediction m Lin lon




Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Practice
Problem 4b:
Linear
Regression

Now suppose we slightly alter the dataset in different ways:
for each new dataset, select the option below that best

approximates the new line linear regression would learn

Observed data * Obseved data
Linear regression prediction o Ling i
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Practice

Problem 4c:

Linear
Regression
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Consider the dataset plotted in the figure below along with
the line learned by linear regression.

Now suppose we slightly alter the dataset in different ways:
for each new dataset, select the option below that best

approximates the new line linear regression would learn

Observed data « Observed data « Obseved data
Linear regression prediiction o Linear regression prediction m Lin lon




Poll Question 2 What questions do you have?
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Recall:
Gradient

Descent for
Linear
Regression

9/26/22

* Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

i procedure GDLR(D, ')
2 0 «— 6 > Initialize parameters
3 while not converged do

: N 9T x (D) — (1)) (1) i
4: g+ > ._,(0'x y\)x > Compute gradient
5
6

0 0—ng > Update parameters
return 6




mean squared error

()
S
S

N
1 . A2 .
J(8,,6,) = Nz(ym — g7Tx®) J oo .\
=1 S
A ' 8y
| Q

0.6

Recall: . N
Gradient .
Descent for iteration t

0.0 +

Llnea I = C*(X) (unknown) 71,(36; 9(4)) 0.0 0.2 0.4 6, 8

Regression
h(x; 61)
1

0.01 0.02 25.2

“
0.

— h(x; 8) 2 030 012 87
h(x; 6D) 3 051 0.30 1.5
> 4 059 043 0.2
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N
1 . <2
J(61,0;) = Nz(y(l) — HTx(l))
A =1

A

Why
Gradient
Descent for iteration t

A

mean squared error

0.0

Linear y = ¢ (x) (unknown) 71,(x; 0(4)) 0.0 i 0.4 0.6

01

hx; 012)
1

0.01 0.02 25.2

Regression?

— h(x; 8) 2 030 012 87
h(x; 6D) 3 051 0.30 1.5
> 4 059 043 0.2
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* A function f:RP - Riis convex if
Vil eRP,x®P eRPand0<c<1
flex®W + (1 - 0)x@) < cf () + (1 = ) f(x?)

Jf?

Convexity

cf(x(l)) + (1 - c)f(x(z))

~— N O O O O O O

flex® + (1 - c)x®@)
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* A function f:RP - Riis convex if
Vil eRP,x®P eRPand0<c<1
flex®W + (1 - 0)x@) < cf () + (1 = ) f(x?)

Jf?
Convexity

cf(xM)+ (1 -o)f(x@) ,
o)

flex® + (1 - c)x®@)

| : T({") .
2@ Xex® 4 (1 - )x@ x®@
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» A function f: RP — Ris strictly convex if
Vi eR xPD eRPand0<c< 1
flex® + (1 - )x@) < cf(x®) + (1 = ) f(x?P)

Jf?

Convexity

cf(x(l)) + (1 - c)f(x(z))

flex® + (1 - c)x®@)
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_---¥  Convex functions

Convexity

Non-convex functions
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/--¥  Given a function f: R? -> R
* x" is a global minimum iff
fx)<f(x)vxeR?

Convexity

”’ . . . .
* x* is a local minimum iff

Jest. f(x) < f(x)V
xst |lx—x*|, <e

L\\/\J
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Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...




Convexity
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Strictly convex functions:

There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...




 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

.

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent &

Convexity

9/26/22



 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent &

Convexity
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 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent &

Convexity

9/26/22



N
1 . <2
J(61,0;) = Nz(y(l) — HTx(l))
A =1

A

Why
Gradient
Descent for iteration t

A

mean squared error

0.0

Linear y = ¢ (x) (unknown) 71,(x; 0(4)) 0.0 i 0.4 0.6

01

hx; 012)
1

0.01 0.02 25.2

Regression?

— h(x; 8) 2 030 012 87
h(x; 6D) 3 051 0.30 1.5
> 4 059 043 0.2
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N
1 . 2
1(6,,6,) = Nz(ym _ gTx)

A

The mean
squared
error Is

A

mean squared error

convex (but iteration t
not a|wayS = ¢ (x) (unknown) 71,(35; o) o+ ) ~

strictly
convex) h(x; 0)

0.01 0.02 25.2

— h(x; 8) 2 030 012 87
h(x; 6D) 3 051 0.30 1.5
> 4 059 043 0.2
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Okay, fine
but couldn’t
we do
something
simpler?

9/26/22

A

mean squared error

iteration t

0.0 +

N
1 . . .
J(04,6;) = Nz(y(l) - BTx(l))z §/
A ' 8y
A

o
S
<

un
~

&&

0.6

<
S
S
Q
0.

o
o
o

= ¢ (x) (unknown) 0.0

(x; 0)

h(x; 03

— h(x; 0?)
h(x; 6D)
>

0

1

2
3
4

2

0.4

8

01

0.01
0.30
0.51
0.59

0.02 25.2
0.12 8.7
0.30 1.5
0.43 0.2




Closed Form
Optimization
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* Idea: find the critical points of the objective function,

specifically the ones where VJ(6) = 0 (the vector of all

zeros), and eheekif-any-ofthem are locatminima—

1 @'

- X 1 x(Z)T

1 [V
1 x§2)

1 T

1 fo)

is the design matrix 7

le()l) -

yo

)

N
* Notation: given training data D = {(x(n);y(n))}nﬂ

e RN >‘@+1§
'\

cy = [yW, ...,y(N)]T € RY is the target vector




10 —NZZW— ra0)’ »ZC%N@ val

= (e /TLX@ /3

act

Minimizing the d\ (®T YO — Q@Tﬁrj ry 7{)

Mean Squared

- \7”(95*-(%% 2Ty +0)

) (%TX@ 27("7(5 O
7 QXTX 9 2><‘>( = Q
S %8 = axTy D G = (xR -




Closed Form
Optimization

0.2

1 0.59 043

9/26/22



0=X"TX)"xTy

1. Is XTX invertible?

Closed Form
Solution

2. If so, how computationally expensive is inverting X X?
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Closed Form
Solution

9/26/22

0=X"TX)"xTy

Is XT X invertible?

 When N » D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others) then
there are either 0 or infinitely many solutions!

If so, how computationally expensive is inverting X7 X?




Linear

Regression:
Unigueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




Linear

Regression:
Unigueness

9/26/22

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




Linear

Regression:
Unigueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




EY+(L4)"
= W x +5
v =0 %"L \

* Consider a 1D linear y

regression model trained

to minimize the mean

squared error: how many

Poll Question 3

optimal solutions (i.e.,

sets of parameters 0) are

there for the given

dataset?

A. -1 (TOXIC) B. 0
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Linear

Regression:
Unigueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




Linear

Regression:
Unigueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




Linear

Regression:
Unigueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




0=X"TX)"xTy

1. Is XTX invertible?

Closed Form
Solution

2. If so, how computationally expensive is inverting X X?

9/26/22



Closed Form
Solution
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0=X"TX)"xTy
Is XT X invertible?

 When N » D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the

A
(DH)

features is a linear combination of the others) then (é?

there are either O or infinitely many solutions <
If so, how computationally expensive is inverting X7 X?
« XTX € RPTXP+1 g inverting XT X takes O(D3) time...
« Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!



Linear
Regression

Learning
Objectives
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You should be able to...

* Design k-NN Regression and Decision Tree Regression

* Implement learning for Linear Regression using
gradient descent or closed form optimization

* Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

- ldentify situations where least squares regression has
exactly one solution or infinitely many solutions




