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Q	&	A:	

The	Perceptron	
mistake	bound	
is	so	strange,	
how	exactly	
did	we	end	up	
with	 ⁄𝑅 𝛾 !?

� Definitely	a	fair	question:	while	the	proof	of	the	

Perceptron	mistake	bound	isn’t	too	complicated,	it’s	
also	not	strictly	speaking	relevant	to	the	content	of	our	
course.	

� That	being	said,	Matt	has	graciously	agreed	to	put	
together	a	short	(optional)	video going	through	the	

proof;	if	you’re	interested,	you	can	find	it	here,	in	our	
Panopto	folder.	
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https://scs.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=40cf1588-5e37-4082-9cf2-af1c011d294f


Front	Matter

� Announcements:	

� HW3	released	9/21,	due	9/28	at	11:59	PM	

� Only	two	grace	days	allowed	on	HW3

� HW3	exit	poll	has	also	been	released:	you	have	

until	one	week	from	the	due	date	to	complete	it

� Exam	1	on	10/4	(one	week	from	tomorrow!)	from	

6:30	PM	- 8:30	PM

� If	you	have	a	conflict,	you	must	complete the	

Exam	conflict	form by	9/27	(tomorrow!)	at	1	PM	
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https://forms.gle/61cqb2ZN1BuQ9Pgd8


Exam	1	
Logistics

� Location	&	Seats:	You	all	will	be	split	across	multiple	

(large)	rooms.

� Everyone	will	have	an	assigned	seat

� Please	watch	Piazza	carefully	for	more	details

� If	you	have	exam	accommodations	through	ODR,	
they	will	be	proctoring	your	exam	on	our	behalf;	

you	are	responsible	for	submitting	the	exam	
proctoring	request	through	your	student	portal.	
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Exam	1	
Logistics

� Format	of	questions:
�Multiple	choice

� True	/	False	(with	justification)

� Derivations

� Short	answers

� Drawing	&	Interpreting	figures

� Implementing	algorithms	on	paper

� No	electronic	devices	(you	won’t	need	them!)

� You	are	allowed	to	bring	one	letter-size	sheet	of	notes;	
you	can	put	whatever you	want	on	both	sides
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Exam	1	
Topics

� Covered	material:	Lectures	1	– 7
� Foundations

� Probability,	Linear	Algebra,	Geometry,	Calculus
� Optimization

� Important	Concepts
� Overfitting
�Model	selection	/	Hyperparameter	optimization

� Decision	Trees
� 𝑘-NN
� Perceptron
� Regression

� Decision	Tree	and	𝑘-NN	Regression
� Linear	Regression
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Exam	1	
Preparation

� Attend	the	midterm	review	lecture	(right	now!)	

� Review	the	exam	practice	problems	(released	9/22	on	
the	course	website,	under	Coursework)

� Review	HWs	1	- 3

� Consider	whether	you	have	achieved	the	“learning	
objectives”	for	each	lecture	/	section

�Write	your	one-page	cheat	sheet	(back	and	front)
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Exam	1	
Tips

� Solve	the	easy	problems	first	

� If	a	problem	seems	extremely	complicated,	you	might	be	
missing	something

� If	you	make	an	assumption,	write	it	down

� Don’t	leave	any	answer	blank

� If	you	look	at	a	question	and	don’t	know	the	answer:

� just	start	trying	things

� consider	multiple	approaches	

� imagine	arguing	for	some	answer	and	see	if	you	like	it
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Practice	
Problem	1a:
Decision	Trees

9/26/22

•

subtree1 subtree2

•
log2 0.75 = �0.4 log2 0.25 = �2

�0.5 log2 0.5� 0.5 log2 0.5

�0.75 log2 0.75� 0.25 log2 0.25 ⇡
�0.75 log2 0.75� 0.25 log2 0.25 ⇡

>

9

�What	would	be	the	effect	of	the	“Weekend”	attribute	
on	the	decision	tree	if	we	made	it	the	root	node?	
Explain	your	answer	in	terms	of	mutual	information



Practice	
Problem	1b:
Decision	Trees
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•

subtree1 subtree2

•
log2 0.75 = �0.4 log2 0.25 = �2

�0.5 log2 0.5� 0.5 log2 0.5

�0.75 log2 0.75� 0.25 log2 0.25 ⇡
�0.75 log2 0.75� 0.25 log2 0.25 ⇡

>

10

�Which	attribute	would	we	split	on	first	if	we	used	
mutual	information	as	the	splitting	criterion?	You	may	

use	log!
"
# = −0.4 and	log!

$
# = −2



Practice	
Problem	2:
𝑘-NN	

� Consider	the	dataset	below:	

�What	is	the	leave-one-out	cross-validation	error	for	a	1-
NN	model	using	the	Euclidean	distance?
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Practice	
Problem	3:	
Perceptron

� True	or	False:	Consider	two	datasets	

𝒟$ = 𝒙$
$ , 𝑦$

$ , 𝒙$
! , 𝑦$

! , … , 𝒙$
%! , 𝑦$

%! and	

𝒟! = 𝒙!
$ , 𝑦!

$ , 𝒙!
! , 𝑦!

! , … , 𝒙!
%" , 𝑦!

%" where	

𝒙$
& ∈ ℝ'! and	𝒙!

& ∈ ℝ'" .	Suppose	𝑁$ > 𝑁! and	𝑑$ > 𝑑!.	
The	maximum	number	of	mistakes	the	Perceptron	learning	
algorithm	will	make	on	𝒟$ is	higher	than	the	maximum	
number	of	mistakes	it	will	make	on	𝒟!.
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Poll	Question	1

� True	or	False:	Consider	two	datasets	

𝒟$ = 𝒙$
$ , 𝑦$

$ , 𝒙$
! , 𝑦$

! , … , 𝒙$
%! , 𝑦$

%! and	

𝒟! = 𝒙!
$ , 𝑦!

$ , 𝒙!
! , 𝑦!

! , … , 𝒙!
%" , 𝑦!

%" where	

𝒙$
& ∈ ℝ'! and	𝒙!

& ∈ ℝ'" .	Suppose	𝑁$ > 𝑁! and	𝑑$ > 𝑑!.	
The	maximum	number	of	mistakes	the	Perceptron	learning	
algorithm	will	make	on	𝒟$ is	higher	than	the	maximum	
number	of	mistakes	it	will	make	on	𝒟!.

A. True

B. False

C. True	and	False	(TOXIC)
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider	the	dataset	plotted	in	the	figure	below	along	with	
the	line	learned	by	linear	regression.	

Now	suppose	we	slightly	alter	the	dataset	in	different	ways:	
for	each	new	dataset,	select	the	option	below	that	best	
approximates	the	new	line	linear	regression	would	learn

Practice	
Problem	4a:	
Linear	
Regression

9/26/22 14
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider	the	dataset	plotted	in	the	figure	below	along	with	
the	line	learned	by	linear	regression.	

Now	suppose	we	slightly	alter	the	dataset	in	different	ways:	
for	each	new	dataset,	select	the	option	below	that	best	
approximates	the	new	line	linear	regression	would	learn

Practice	
Problem	4b:	
Linear	
Regression

9/26/22 15
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3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:
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w
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Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.

Consider	the	dataset	plotted	in	the	figure	below	along	with	
the	line	learned	by	linear	regression.	

Now	suppose	we	slightly	alter	the	dataset	in	different	ways:	
for	each	new	dataset,	select	the	option	below	that	best	
approximates	the	new	line	linear	regression	would	learn

Practice	
Problem	4c:	
Linear	
Regression
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Poll	Question	2 What	questions	do	you	have?
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Recall:	
Gradient	
Descent	for	
Linear	
Regression

� Gradient	descent	for	linear	regression	repeatedly	takes	

steps	opposite	the	gradient	of	the	objective	function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



𝜃2
Recall:	
Gradient	
Descent	for	
Linear	
Regression
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m
ea
n	
sq
ua
re
d	
er
ro
r

𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
0
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2
Why
Gradient	
Descent	for	
Linear	
Regression?
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m
ea
n	
sq
ua
re
d	
er
ro
r

𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
0
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



� A	function	𝑓:ℝ( → ℝ is	strictly convex	if	
∀ 𝒙 $ ∈ ℝ(, 𝒙 ! ∈ ℝ( and	0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 $ + 1 − 𝑐 𝒙 ! ≤ 𝑐𝑓 𝒙 $ + 1 − 𝑐 𝑓 𝒙 !

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #
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𝑓
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� A	function	𝑓:ℝ( → ℝ is	strictly convex	if	
∀ 𝒙 $ ∈ ℝ(, 𝒙 ! ∈ ℝ( and	0 < 𝑐 < 1
𝑓 𝑐𝒙 $ + 1 − 𝑐 𝒙 ! < 𝑐𝑓 𝒙 $ + 1 − 𝑐 𝑓 𝒙 !

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #



Convexity
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Convex	functions

Non-convex	functions



Convexity
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Given	a	function	𝑓:ℝ( → ℝ
• 𝒙∗ is	a	global	minimum	iff
𝑓 𝒙∗ ≤ 𝑓 𝒙 ∀ 𝒙 ∈ ℝ(

• 𝒙∗ is	a	local	minimum	iff
∃ 𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 ∀
𝒙 s.t. 𝒙 − 𝒙∗ ! < 𝜖



Convexity
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Convex	functions:

Each	local	minimum	is	a	
global	minimum!

Non-convex	functions:

A	local	minimum	may	or	may	
not	be	a	global	minimum…



Convexity
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Strictly	convex	functions:

There	exists	a	unique	global	
minimum!

Non-convex	functions:

A	local	minimum	may	or	may	
not	be	a	global	minimum…



Gradient	
Descent	&	
Convexity

� Gradient	descent	is	a	local	optimization	algorithm	– it	

will	converge	to	a	local	minimum	(if	it	converges)

�Works	great	if	the	objective	function	is	convex!	
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� Gradient	descent	is	a	local	optimization	algorithm	– it	

will	converge	to	a	local	minimum	(if	it	converges)

� Not	ideal	if	the	objective	function	is	non-convex…
Gradient	
Descent	&	
Convexity
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Gradient	
Descent	&	
Convexity
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� Gradient	descent	is	a	local	optimization	algorithm	– it	

will	converge	to	a	local	minimum	(if	it	converges)

� Not	ideal	if	the	objective	function	is	non-convex…



Gradient	
Descent	&	
Convexity

� Gradient	descent	is	a	local	optimization	algorithm	– it	

will	converge	to	a	local	minimum	(if	it	converges)

� Not	ideal	if	the	objective	function	is	non-convex…
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𝜃2
Why
Gradient	
Descent	for	
Linear	
Regression?
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m
ea
n	
sq
ua
re
d	
er
ro
r

𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
0
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2The	mean	
squared	
error	is	
convex	(but	
not	always	
strictly	
convex)
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m
ea
n	
sq
ua
re
d	
er
ro
r

𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
0
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2
Okay,	fine	
but	couldn’t	
we	do	
something
simpler?	

Yes!	
(sometimes)
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m
ea
n	
sq
ua
re
d	
er
ro
r

𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
0
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



Closed	Form	
Optimization

� Idea:	find	the	critical	points of	the	objective	function,	

specifically	the	ones	where	∇𝐽 𝜃 = 𝟎 (the	vector	of	all	
zeros),	and	check	if	any	of	them	are	local	minima

� Notation:	given	training	data	𝒟 = 𝒙 * , 𝑦 *
*+$
%

� 𝑋 =

1 𝒙 $ ,

1 𝒙 ! ,

⋮ ⋮
1 𝒙 % ,

=

1 𝑥$
$ ⋯ 𝑥(

$

1 𝑥$
! ⋯ 𝑥(

!

⋮ ⋮ ⋱ ⋮
1 𝑥$

% ⋯ 𝑥(
%

∈ ℝ%×(.$

is	the	design	matrix

� 𝒚 = 𝑦 $ , … , 𝑦 % ,
∈ ℝ% is	the	target	vector
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𝐽 𝜽 =
1
𝑁K
&+$

%
1
2 𝑦 & − 𝜽,𝒙 & !

=
1
2𝑁K

&+$

%

𝒙 & ,𝜽 − 𝑦 &
!

Minimizing	the	
Mean	Squared	
Error

40

=
1
2𝑁

𝑋𝜃 − 𝒚 , 𝑋𝜃 − 𝒚

9/26/22

∇𝜽𝐽 𝜽 =
1
2𝑁 2𝑋,𝑋𝜽 − 2𝑋,𝒚

=
1
2𝑁 𝜽,𝑋,𝑋𝜽 − 2𝜽,𝑋,𝒚 + 𝒚,𝒚

∇𝜽𝐽 L𝜽 =
1
2𝑁 2𝑋,𝑋L𝜽 − 2𝑋,𝒚 = 0

→ 𝑋,𝑋L𝜽 = 𝑋,𝒚

→ L𝜽 = 𝑋,𝑋 0$𝑋,𝒚



𝜃2

Closed	Form	
Optimization
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𝜃1

𝑥

𝑦

𝑦 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; >𝜽)

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃# )
1 0.59 0.43 0.2

L𝜽 = 𝑋,𝑋 0$𝑋,𝒚



Closed	Form	
Solution

429/26/22

1. Is	𝑋,𝑋 invertible?

• When	𝑁 ≫ 𝐷 + 1,	𝑋,𝑋 is	(almost	always)	full	rank	and	
therefore,	invertible!
• If	𝑋,𝑋 is	not	invertible	(occurs	when	one	of	the	

features	is	a	linear	combination	of	the	others)	then	
there	are	either	0	or	infinitely	many	solutions!

2. If	so,	how	computationally	expensive	is	inverting	𝑋,𝑋?
• 𝑋,𝑋 ∈ ℝ(.$×(.$ so	inverting	𝑋,𝑋 takes	𝑂 𝐷" time…	

• Can	use	gradient	descent	to	speed	things	up!

L𝜽 = 𝑋,𝑋 0$𝑋,𝒚
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Linear	
Regression:	
Uniqueness

44

𝑦

𝑥

� Consider	a	1D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?
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𝑦

𝑥

� Consider	a	1D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?
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Linear	
Regression:	
Uniqueness
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𝑦

𝑥

� Consider	a	1D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?
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Poll	Question	3

47

𝑦

𝑥

� Consider	a	1D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?

A.	-1	(TOXIC) B.	0 C.	1	 D.	2 E.	∞

9/26/22



Linear	
Regression:	
Uniqueness
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� Consider	a	2D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?	

𝑦

𝑥1

𝑥2
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� Consider	a	2D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?	

𝑦

𝑥1

𝑥2
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� Consider	a	2D	linear	

regression	model	trained	
to	minimize	the	mean	
squared	error:	how	many	

optimal	solutions	(i.e.,	
sets	of	parameters	𝜃)	are	
there	for	the	given	
dataset?	

𝑦

𝑥1

𝑥2
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Closed	Form	
Solution
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1. Is	𝑋,𝑋 invertible?

• When	𝑁 ≫ 𝐷 + 1,	𝑋,𝑋 is	(almost	always)	full	rank	and	
therefore,	invertible!
• If	𝑋,𝑋 is	not	invertible	(occurs	when	one	of	the	

features	is	a	linear	combination	of	the	others)	then	
there	are	either	0	or	infinitely	many	solutions

2. If	so,	how	computationally	expensive	is	inverting	𝑋,𝑋?
• 𝑋,𝑋 ∈ ℝ(.$×(.$ so	inverting	𝑋,𝑋 takes	𝑂 𝐷" time…

• Computing	𝑋,𝑋 takes	𝑂 𝑁𝐷! time
• Can	use	gradient	descent	to	(potentially)	speed	things	
up	when	𝑁 and	𝐷 are	large!

L𝜽 = 𝑋,𝑋 0$𝑋,𝒚
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Linear	
Regression	
Learning	
Objectives

You	should	be	able	to…
� Design	k-NN	Regression	and	Decision	Tree	Regression	
� Implement	learning	for	Linear	Regression	using	
gradient	descent	or	closed	form	optimization

� Choose	a	Linear	Regression	optimization	technique	
that	is	appropriate	for	a	particular	dataset	by	
analyzing	the	tradeoff	of	computational	complexity	
vs.	convergence	speed	

� Identify	situations	where	least	squares	regression	has	
exactly	one	solution	or	infinitely	many	solutions
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