MACHINE LEARNING DEPARTMENT

10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Linear Regression

Matt Gormley Lecture 7
Sep. 20, 2022

Reminders

- Homework 3: KNN, Perceptron, Lin.Reg.
- Out: Wed, Sep. 21
- Due: Wed, Sep. 28 at 11:59pm
- (only two grace/late days permitted)
- Exam conflicts form

```
What type of conflict do you have?*
Class
Conference
Interview
Medical
Time Zone
Religious Obligation
Other..
```


DECISION TREES WITH REAL-VALUED FEATURES

Q\&A

Q: How do we learn a Decision Tree with realvalued features?

A:

Decision Boundary Example

Dataset: outputs $\{+$,$\} ; Features x_{1}$ and x_{2}

In-Class Exercise

Question:
A. Can a k-Nearest Neighbor classifier with $\mathrm{k}=1$ achieve zero training error on this dataset?
B. If 'Yes', draw the learned decision boundary. If 'No', why not?

Question:
A. Can a Decision Tree classifier achieve zero training error on this dataset?
B. If 'Yes', draw the learned decision boundary. If 'No', why not?

Q\&A

Q: How do we learn a Decision Tree with realvalued features?

A: Make new discrete features out of the real-valued features and then learn the Decision Tree as normal! Here's an example...
Ex: Dequiso Tire e e/continoos facies

REGRESSION

Regression

Goal:

- Given a training dataset of pairs (\mathbf{x}, y) where
- \mathbf{x} is a vector
- y is a scalar

- Learn a function (aka. curve or line) $y^{\prime}=h(x)$ that best fits the training data
Example Applications:
- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Dream)

Regression

Example: Dataset with only one feature x and one scalar output y

Q: What is the function that best fits these points?

K-NEAREST NEIGHBOR REGRESSION

k-NN Regression

Example: Dataset with only one feature x and one scalar output y

Algorithm 1: $\mathrm{k}=1$ Nearest Neighbor Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances $x^{(n 1)}$ and $x^{(n 2)}$ in training data and return the weighted average of their y values

k-NN Regression

Example: Dataset with only

Algorithm 1: $\mathrm{k}=1$ Nearest Neighbor Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances $x^{(n 1)}$ and $x^{(n 2)}$ in training data and return the weighted average of their y values

k-NN Regression

Algorithm 1: $\mathrm{k}=1$ Nearest Neighbor Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest x in training data and return its y

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances $x^{(n 1)}$ and $x^{(n 2)}$ in training data and return the weighted average of their y values

DECISION TREE REGRESSION

Decision Tree Regression

Decision Tree for Regression

Decision Tree Regression

Dataset for Regression			
Y	A	B	C
4	1	0	0
1	1	0	1
3	1	0	0
7	0	0	1
5	1	1	0
6	0	1	1
8	1	1	0
9	1	1	1

Decision Tree for Regression

During learning, choose the attribute that minimizes an appropriate splitting criterion (e.g. mean squared error, mean absolute error)

LINEAR FUNCTIONS, RESIDUALS, AND MEAN SQUARED ERROR

Linear Functions

Def: Regression is predicting real-valued outputs

$$
\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n} \text { with } \mathbf{x}^{(i)} \in \mathbb{R}^{M}, y^{(i)} \in \mathbb{R}
$$

Common Misunderstanding:

Linear functions \neq Linear decision boundaries

Linear Functions

Def: Regression is predicting real-valued outputs

$$
\mathcal{D}=\left\{\left(\mathbf{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n} \text { with } \mathbf{x}^{(i)} \in \mathbb{R}^{M}, y^{(i)} \in \mathbb{R}
$$

Common Misunderstanding:

Linear functions \neq Linear decision boundaries

- A general linear function is

$$
y=\mathbf{w}^{T} \mathbf{x}+b
$$

- A general linear decision boundary is

$$
y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+b\right)
$$

Regression Problems

Chalkboard

- Residuals
- Mean squared error

The Big Picture

OPTIMIZATION FOR ML

Unconstrained Optimization

- Def: In unconstrained optimization, we try minimize (or maximize) a function with no constraints on the inputs to the function

Given a function $J(\boldsymbol{\theta}), J: \mathbb{R}^{M} \rightarrow \mathbb{R}$

Our goal is to find $\hat{\boldsymbol{\theta}}=\operatorname{argmin} J(\boldsymbol{\theta})$ $\boldsymbol{\theta} \in \mathbb{R}^{M}$

For ML, this is the objective function

Optimization for ML

Not quite the same setting as other fields...

- Function we are optimizing might not be the true goal
(e.g. likelihood vs generalization error)
- Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might not help)
- Stopping early can help generalization error (i.e. "early stopping" is a technique for regularization - discussed more next time)

min vs. argmin

$$
\begin{aligned}
& v^{*}=\min _{x} f(x) \\
& x^{*}=\operatorname{argmin}_{x} f(x)
\end{aligned}
$$

1. Question: What is v^{*} ?
2. Question: What is x^{*} ?

min vs. argmin

$$
\begin{aligned}
& v^{*}=\min _{x} f(x) \\
& x^{*}=\operatorname{argmin}_{x} f(x)
\end{aligned}
$$

1. Question: What is v^{*} ?
$v^{*}=1$, the minimum value of the function
2. Question: What is x^{*} ?
$x^{*}=0$, the argument that yields the minimum value

OPTIMIZATION METHOD \#0: RANDOM GUESSING

Notation Trick:

Folding in the Intercept Term

$$
\begin{aligned}
\mathbf{x}^{\prime} & =\left[1, x_{1}, x_{2}, \ldots, x_{M}\right]^{T} \\
\boldsymbol{\theta} & =\left[b, w_{1}, \ldots, w_{M}\right]^{T}
\end{aligned}
$$

Notation Trick: fold the bias b and the weights w

$$
\begin{aligned}
h_{\mathbf{w}, b}(\mathbf{x}) & =\mathbf{w}^{T} \mathbf{x}+b \\
h_{\boldsymbol{\theta}}\left(\mathbf{x}^{\prime}\right) & =\boldsymbol{\theta}^{T} \mathbf{x}^{\prime}
\end{aligned}
$$ dimensionality by one!

This convenience trick allows us to more compactly talk about linear functions as a simple dot product (without explicitly writing out the intercept term every time).

Linear Regression as Function

$\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$

Approximation

1. Assume \mathcal{D} generated as:

$$
\begin{aligned}
\mathbf{x}^{(i)} & \sim p^{*}(\cdot) \\
y^{(i)} & =h^{*}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$
\mathcal{H}=\left\{h_{\boldsymbol{\theta}}: h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^{M}\right\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N} \sum_{i=1}^{N} e_{i}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& \left.=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
\end{aligned}
$$

4. Solve the unconstrained optimization problem via favorite method:

- gradient descent
- closed form
- stochastic gradient descent
- ...

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})
$$

5. Test time: given a new \mathbf{x}, make prediction \hat{y}

$$
\hat{y}=h_{\hat{\boldsymbol{\theta}}}(\mathbf{x})=\hat{\boldsymbol{\theta}}^{T} \mathbf{x}
$$

Contour Plots

Contour Plots

1. Each level curve labeled with value
2. Value label indicates the value of the function for all points lying on that level curve
3. Just like a topographical map, but for a function

Optimization by Random Guessing

Optimization Method \#0:

Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J ($\boldsymbol{\theta}$)

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.2	0.2	10.4
2	0.3	0.7	7.2
3	0.6	0.4	1.0
4	0.9	0.7	16.2

Optimization by Random Guessing

Optimization Method \#0:

Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

For Linear Regression:

- objective function is Mean Squared Error (MSE)
- MSE $=J(w, b)$

$$
\begin{aligned}
& =J(\mathrm{~W}, \mathrm{D}) \\
& \left.=J\left(\boldsymbol{\theta}_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
\end{aligned}
$$

- contour plot: each line labeled with MSE - lower means a better fit
- minimum corresponds to parameters $(w, b)=\left(\theta_{1}, \theta_{2}\right)$ that best fit some training dataset

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.2	0.2	10.4
2	0.3	0.7	7.2
3	0.6	0.4	1.0
4	0.9	0.7	16.2

Counting Butterflies

Linear Regression in High Dimensions

- In our discussions of linear regression, we will always assume there is just one output, y
- But our inputs will usually have many features:

$$
\mathbf{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{M}\right]^{\top}
$$

- For example:
- suppose we had a drone take pictures of each section of forest
- each feature could correspond to a pixel in this image such that $x_{m}=1$ if the pixel is orange and $x_{m}=0$ otherwise
- the output y would be the number of butterflies in each picture

Q: How would you obtain ground truth

Linear Regression by Rand. Guessing

Optimization Method \#0:

Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J ($\boldsymbol{\theta}$)

For Linear Regression:

- target function $\mathrm{h}^{*}(\mathrm{x})$ is unknown
- only have access to $h *(x)$ through training examples ($\mathrm{x}^{(\mathrm{i})}, \mathrm{y}^{(\mathrm{i})}$)
- want $h\left(x ; \boldsymbol{\theta}^{(t)}\right)$ that best approximates $h^{*}(x)$
- enable generalization w/inductive bias that restricts hypothesis class to linear functions

Linear Regression by Rand. Guessing

Optimization Method \#0:
 Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J ($\boldsymbol{\theta}$)

$$
\left.\mathrm{J}(\boldsymbol{\theta})=\mathrm{J}\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
$$

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.2	0.2	10.4
2	0.3	0.7	7.2
3	0.6	0.4	1.0
4	0.9	0.7	16.2

OPTIMIZATION METHOD \#1: GRADIENT DESCENT

Optimization for ML

Chalkboard

- Derivatives
- Gradient

Topographical Maps

Topographical Maps

Gradients

Gradients

These are the gradients that
Gradient Ascent would follow.

Gradients

These are the gradients that
Gradient Ascent would follow.

These are the negative gradients that Gradient Descent would follow.

These are the negative gradients that Gradient Descent would follow.

Gradient Descent

Chalkboard

- Gradient Descent Algorithm
- Details: starting point, stopping criterion, line search

Gradient Descent

Algorithm 1 Gradient Descent
1: procedure $\operatorname{GD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
2: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
3: while not converged do
4: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
5: \quad return θ

In order to apply GD to Linear Regression all we need is the gradient of the objective function (i.e. vector of partial derivatives).

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\left[\begin{array}{c}
\frac{d}{d \theta_{1}} J(\boldsymbol{\theta}) \\
\frac{d}{d \theta_{2}} J(\boldsymbol{\theta}) \\
\vdots \\
\frac{d}{d \theta_{M}} J(\boldsymbol{\theta})
\end{array}\right]
$$

Gradient Descent

Algorithm 1 Gradient Descent 1: procedure $\operatorname{GD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
 2: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
 3: while not converged do
 4:
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
 5: \quad return $\boldsymbol{\theta}$

There are many possible ways to detect convergence. For example, we could check whether the L2 norm of the gradient is below some small tolerance.

$$
\left\|\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})\right\|_{2} \leq \epsilon
$$

Alternatively we could check that the reduction in the objective function from one iteration to the next is small.

GRADIENT DESCENT FOR LINEAR REGRESSION

Linear Regression as Function

$\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$

Approximation

1. Assume \mathcal{D} generated as:

$$
\begin{aligned}
\mathbf{x}^{(i)} & \sim p^{*}(\cdot) \\
y^{(i)} & =h^{*}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$
\mathcal{H}=\left\{h_{\boldsymbol{\theta}}: h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^{M}\right\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N} \sum_{i=1}^{N} e_{i}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& \left.=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
\end{aligned}
$$

4. Solve the unconstrained optimization problem via favorite method:

- gradient descent
- closed form
- stochastic gradient descent
- ...

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})
$$

5. Test time: given a new \mathbf{x}, make prediction \hat{y}

$$
\hat{y}=h_{\hat{\boldsymbol{\theta}}}(\mathbf{x})=\hat{\boldsymbol{\theta}}^{T} \mathbf{x}
$$

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives smallest J ($\boldsymbol{\theta}$)

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc.

Optimization Method \#1:

Gradient Descent

1. Pick a random $\boldsymbol{\theta}$
2. Repeat:
a. Evaluate gradient $\nabla \mathrm{J}(\boldsymbol{\theta})$
b. Step opposite gradient
3. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)
$\left.\mathrm{J}(\boldsymbol{\theta})=\mathrm{J}\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}$

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc.

Optimization for Linear Regression

Chalkboard

- Computing the gradient for Linear Regression
- Gradient Descent for Linear Regression

Gradient Calculation for Linear Regression

Derivative of $J^{(i)}(\boldsymbol{\theta})$:

$$
\begin{aligned}
\frac{d}{d \theta_{k}} J^{(i)}(\boldsymbol{\theta}) & =\frac{d}{d \theta_{k}} \frac{1}{2}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2} \\
& =\frac{1}{2} \frac{d}{d \theta_{k}}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right)^{2} \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \frac{d}{d \theta_{k}}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \frac{d}{d \theta_{k}}\left(\sum_{j=1}^{K} \theta_{j} x_{j}^{(i)}-y^{(i)}\right) \\
& =\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{k}^{(i)}
\end{aligned}
$$

Derivative of $J(\boldsymbol{\theta})$:

$$
\begin{aligned}
\frac{d}{d \theta_{k}} J(\boldsymbol{\theta}) & =\sum_{i=1}^{N} \frac{d}{d \theta_{k}} J^{(i)}(\boldsymbol{\theta}) \\
& =\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{k}^{(i)}
\end{aligned}
$$

Gradient of $J(\boldsymbol{\theta}) \quad$ [used by Gradient Descent]

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) & =\left[\begin{array}{c}
\frac{d}{d \theta_{1}} J(\boldsymbol{\theta}) \\
\frac{d}{d \theta_{2}} J(\boldsymbol{\theta}) \\
\vdots \\
\frac{d}{d \theta_{M}} J(\boldsymbol{\theta})
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{1}^{(i)} \\
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{2}^{(i)} \\
\vdots \\
\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) x_{N}^{(i)}
\end{array}\right] \\
& =\sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression
1: $\operatorname{procedure} \operatorname{GDLR}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
2: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)} \quad \triangleright$ Initialize parameters
3: while not converged do
4: $\quad \mathbf{g} \leftarrow \sum_{i=1}^{N}\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}-y^{(i)}\right) \mathbf{x}^{(i)} \quad \triangleright$ Compute gradient
5: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g} \quad \triangleright$ Update parameters
6: return θ

