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Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Wed, Sep. 21
— Due: Wed, Sep. 28 at 11:59pm
— (only two grace/late days permitted)

« Exam conflicts form




DECISION TREES WITH
REAL-VALUED FEATURES



Q&A

Q: How do we learn a Decision Tree with real-
valued features?

A:
Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question:

Question:

A. Can ak-Nearest Neighbor classifier s . "
with k=1achieve zero training error . Cana De.CI.SIOn Tree class'lfler achieve
on this dataset? zero training error on this dataset?

B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?
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Q&A

Q: How do we learn a Decision Tree with real-
valued features?

A: Make new discrete features out of the real-valued features and
then learn the Decision Tree as normal! Here’s an example...
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REGRESSION



Regression

Goal:

— Given a training dataset of
pairs (X,y) where

* Xisavector
* yisascalar

— Learna function (aka. curve

or line) y’ = h(x) that best fits
the training data

Example Applications:
— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)

Weighted %ILI

National wiLI Forecast

21 29 37 45 1 9 17
Epidemiological Week




Regression

Example: Dataset with only
one feature x and one scalar
outputy

Q: What is the function that
best fits these points?
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K-NEAREST NEIGHBOR
REGRESSION



K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

Algorithm 1: k=1 Nearest
Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
its 'y

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

Algorithm 1: k=1 Nearest
Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
its 'y

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
o in training data and return
its 'y

\

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values
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DECISION TREE REGRESSION



Decision Tree Regression

Decision Tree for Classification
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Dataset for Regression

O 00 O VI N W

Decision Tree Regression

Decision Tree for Regression

{4;173;775; 67879}
B

{4,1,3,7}/\15,6,8,9}
A A
{7}/\{4,1,3} {6}/\5,8,9]
/ 2.7 6 C
587 \o
6.5 9

During learning, choose the attribute that
minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)




LINEAR FUNCTIONS, RESIDUALS,
AND MEAN SQUARED ERROR



Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x©,yO)"  withx® € RM,y® € R

Y1 y=wx+b

/

>
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Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x©,yO)"  withx® € RM,y® € R

A
y Yy =wix; +wyxy, + b

* Ageneral linear functionis
y=wIx+b

* Ageneral linear decision boundary is
y = sign(w’x + b)

i _
24




Regression Problems

Chalkboard

— Residuals
— Mean squared error



OPTIMIZATION FOR ML



Unconstrained Optimization

* Def: In unconstrained optimization, we try
minimize (or maximize) a function with no
constraints on the inputs to the function

Given a function J(0), J : RM R

A

Our goal is to find @ = argmin J(0)
0 cRM

For ML, these are For ML, this is the
the parameters objective function



Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)

28



min vs. argmin

v¥* = min, f(x)

x* = argmin, f(x)

29



min vs. argmin

v¥* = min, f(x)

x* = argmin, f(x)

30



OPTIMIZATION METHOD #o:
RANDOM GUESSING



Notation Trick:
Folding in the Intercept Term

X/

‘ v,
hwp(X) =Wl x+b
he(X,) — OTX, )/

| T
1,21,22,..., 7]

: T
b, w1, ..., W]

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 55



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}




Contour Plots

Contour Plots
1. Each level curve labeled

e J(©)=1J(8, 6,)=(10(6,-0.5))*+ (6(6, - 0.4))?
2. Value label indicates the L0
value of the function for 0000
all points lying on that .
level curve '
3. Just like a topographical
map, but for a function 064 I S =N
£ S 9 23"
.{\\ : G \ N \ "p Y = 0.4 4
0.2 o
0.0 Y T T {
0.0 0.2 0.4 0.6 0.8 1.0

37




Optimization by Random Guessing

J =) = —0.5)) —0.4))?
Optimization Method #o: (6)=J(8,, 8,) = (10(8, - 0.5)) + (6(8, - 0.4))

Random Guessing v 0.000
1.  Pickarandom 6
2. Evaluate J(0) ]
3. Repeat steps 1and 2 many
times 0-61 : :

4. Return 6 that gives 0, |[¢

O
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0.0 T T T
0.0 0.2 0.4 0.8 1.0
0,
e1 e2 J(61, ez)
0.2 0.2 10.4
0.3 0.7 1.2

B _an L4 e ————
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0.9 | 0.7 16.2

-P'UJ\N = |+




Optimization by Random Guessing

J(0)=J(8,,8,) = = (s —67x"))’
Optimization Method #o: (8) =X )= ¥ ;(y )

Random Guessing B 0.000
1.  Pickarandom©
2. Evaluate J() %]
3. Repeat steps 1and 2 many
times 0.6 - § :

4. Return 0 that gives 0, o

@)
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000'0%
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20

smallest J(0)

0.4 1

S
S
S

For Linear Regression:

* objective function is Mean
Squared Error (MSE)
 MSE =) N 0.0 .
_ JE%:@Z _ %;(y(i)_eTx(i)))z 0.0 0.2 0.4 o, 0.8 1.0
* contour plot: each line labeled with
MSE - lower means a better fit

0.2 1

e1 eZ J(ev e2)

0.2 | 0.2 10.

* minimum corresponds to 0.3 | 0.7 724
arameters (w,b) = (8,, 6,) that . . |

P (w,b) =(8,,6,) 0.6 | 0.4 1.0

best fit some training dataset

D[N [ = ||+

0.9 | 0.7 16.2




Counting Butterflies

y = h*(x)
A (unknown)
’
7)) h(x; 63))
£
9
| -
1Y)
c
S
S
Y
’
° s
* |
>/
>

X, # of mountains
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Linear Regression in High Dimensions

* Inourdiscussions of linear regression, we
will always assume there is just one output,

y
* But ourinputs will usually have many

features:
X = [Xv er-- 7XN\]T
* For example:

— suppose we had a drone take pictures of
each section of forest

— each feature could correspond to a pixel in
this image such that x,,, = 1if the pixel is
orange and x,, = 0 otherwise

— the output y would be the number of
butterflies in each picture

Q: How would you obtain ground truth
data?

49



1.
2.

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random ©
Evaluate J(0)

Repeat steps 1 and 2 many
times

4. Return 0 that gives

smallest J(0)

y=h*(x)
(unknown)
z/ .
Ppr<d
o i :
2
, [

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(),y()

want h(x; ) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions



Linear Regression by Rand. Guessing

J(0)=J(8,8,) = + 3 (s - 67x»))’
Optimization Method #o: ()= )= ¥ ;@ )

Random Guessing v 0.000
1.  Pickarandom 6
2. Evaluate J(0) ]
3. Repeat steps 1and 2 many

times 061 : :
4. Return 6 that gives 0, |[¢

smallest J(0) 0.4 O

wn
Oj6

00p

000'0¢
c7

0005t
ani
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000
15

20

1
=T

S
. 9(4) 3
h(x; 8%) (unknown) | 5

oO.O 0?2 0.4 0?8 1.0
W L 6
t | 6, 0, | J(6,86,)
1| 0.2 | 0.2 10.4
/ h(x; 80) 2 | o. 0.7 7.2
- J<’3 0.6 | 0.4 1.0
N > 40907 10.2




OPTIMIZATION METHOD #1:
GRADIENT DESCENT



Optimization for ML
Chalkboard

— Derivatives
— Gradient





https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/
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J(e) = J(ev ez)
1.0 .
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Gradients

J(6)=J(6,6,)
x NI~~~
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These are the gradients that
Gradient Ascent would follow.



Gradients

I k \ T
0 2%

0 J(e) = J(ev ez)

0.8} In this picture, each arrow is a 2D
vector consisting of two partial
derivatives. o5
0.6 8—91‘7
0.900 VJ((91,92) —
9J
| 965 1
0-4r The vector is evaluated at the
point [6,, 6,]" and plotted with its
0.400 origin there as well.
0.2}
—-g 7
O
R
0.0 ~ ' ' ' pal
0.0 0.2 0.4 0.6 0.8 1.0
0,

These are the gradients that
Gradient Ascent would follow.



J(O) = J(61, 5
0

0.8 |
0.6
0.4}

0.2}

gatlve) Gradients

In this picture, each arrow is a 2D
vector consisting of two partial

0J

~ 90,

oJ

90,

point [6,, 6,]" and plotted with its

These are the negative gradients that
Gradient Descent would follow.

derivatives.
0.900 —VJ((91,92) =
The vector is evaluated at the
0.400 origin there as well.
.o\ 0.2 0.4 0.6 0.8 1.0
0,
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Gradient Descent would follow.



(Negative) Gradient Paths
O,

J(©)=J(9,,6,)
1.0 — 7

\ \.‘\,\\
N

[~
0.8 :\\\‘:\\

0.6

W
0

3
N
h—rj;/':/—
7
7

0.4

\

0.2

0,
Shown are the paths that Gradient Descent

would follow if it were making infinitesimally
small steps.



Gradient Descent

Chalkboard
— Gradient Descent Algorithm
— Details: starting point, stopping criterion, line
search



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 0(0))

1:

2 6 — 09

3: while not converged do
4 00— YVeoJ(0O)

5 return 0

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).




Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 0(0))
0 — 6

1:

2

3: while not converged do
4 00— YVeoJ(0O)

5)

return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.



GRADIENT DESCENT FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}




Linear Regression by Gradient Desc.

J(e) — J(G1, ez) — %i (y(i) _ng(z')))z

Optimization Method #1:
Gradient Descent

1.
2.

Pick arandom 6

Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

Return O that gives
smallest J(0)

=1

1.0
0.00q
o - N
061 o & 22N
0, |5 11
Q
0.2 1 6 v
O
O T T T 1
(%.0 0.2 0.4 0.6 0.8 1.0
0,
t e1 62 J(e17 62)
1 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51]0.30 1.
4059 043] (02D
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Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick arandom 6
2. Repeat:

a. Evaluate gradient VJ(0)
b. Step opposite gradient

3. Return 6 that gives
smallest J(0)

y = h*(x)
A (unl;nown)
//
"
&
¢”‘/’
L
K
’, / ) t 0, 0, J(6, 6,)
/ “*-e é 1 | 0.01 | 0.02 25.2
‘ S 2 To.30 [ 0.12 8.7
&* '3 ] 0.51 | 0.30 1.5
|
X > 91 4lo059]043] 02




Linear Regression by Gradient Desc.

J(©)=J(8.,6 R RVt T ()Y)
Optimization Method #1: () =8, 6,) N;<y )

Gradient Descent +0 0.000
1.  Pickarandom 6
2. Repeat: 08
a. Evaluate gradient VJ(0)
b. Step opposite gradient 064 | S o)
3. Return @ that gives 0, ? > < @ 23

smallest J(O) . Q
y = h*(x) 6 s
A (unl;nown) - u?
Ve
h(x; 6(4)) O
0.0 Y T T f
h(X; 9(3)) 0.0 0.2 0.4 0.6 0.8 1.0
0,
t| 6 | 6 | J6,6)
/l _ h(x; 6@) 1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
—_ h(x; 61) 3 | 0.51 | 0.30 1.5
X > 4 | 0.59 | 0.43 0.2




Linear Regression by Gradient Desc.

LY A
O
-
(V)
o X
Yo
° =
o2
v M
cC
(g0)
(V)
=
, : >
Iteration, t
y = h*(x)
A (unknown)
’
’
h(x; 9(4))
- 9(3)
. h(x; 60)
/
|4 — h(x; 6)
/
— h(x; 6™)
>

t e1 ez J(ev ez)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2
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Linear Regression by Gradient Desc.

J(e) — J(e1, ez) = %i (y(i) _ ng(i)))z

-~ A
| -
O
o A
T R
Vo
5 &
q = A
cC
5 A
= A 0,
, , >
Iteration, t
y = h*(x)
N (unl;nown)
’
h(x; 6(4))
. h(x; 63))

K
} __ h(x; 8@)
/
o h(x; ()
>

i=1
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o
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O
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Q
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Q
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0i4 Oi6
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1

8

t e1 ez J(ev ez)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2

1.0
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Optimization for Linear Regression

Chalkboard

— Computing the gradient for Linear Regression
— Gradient Descent for Linear Regression



Gradient Calculation for Linear Regression

Derivative of J()(8): Derivative of J(6):
d al : N
4 16)(g 9T %) _ /()2 d d
_1d =

(gT (¢) _ (i))2 N
2 d@k _ Z(eTx(z) (z))x(z)
= (87x®) — (%)) (gT (6 _ (@) i=1

— (9Tx — 4@y % (Zg O )

— (8Tx® — y(z))xg)

Gradient of J(6) [used by Gradient Descent]
g 7(6)] 'z%l(e;x(§> _ y@)mg;-

oo | 0] _[EEL o
-ﬁjw)_ pond 1(9Tx(z) y @)z |

N . . .
= 37(67x) — y@)x



GD for Linear Regression

Cradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 9(0))
0 — 6 > Initialize parameters

1:

o

3: white not-converged do

4: < HTm > Compute gradient
5: —0 /

6:

0 > Update parameters
return 6




Regression Loss Functions

In-Class Exercise:
A. £(9,y) = (9)*

could be used as loss C. Uy,y) = 1(@ —y)?

Which of the following

2

functions for training A L,

a linear regression D- 4g,9) = 70~ v)

model? o[-y if [ —y| <0
£ dhy) = {5@ —y| — 36% otherwise

Select all that apply.

F. £(9,y) = log(cosh(§ — y))



CONVEXITY



Convexity

Function f : R — Ris convex
ifV x4 ERM,XQ ERM,O <t<lI:

fltx1+ (1 —t)x2) <tf(x1) + (1 —1)f(x2)

A

tf(wy) + (1 —1)f(22)

f(tiBl -+ (1 — t)CCz)

79



Convexity

Suppose we have a function f(z) : X — ).

e The value z* is a global minimum of f iff f(z*) < f(x),Vx € X.

e The value z* is a local minimum of f iff de s.t. f(z*) < f(z),Vx € [x* — €, 2™ + €].

Convex Function Nonconvex Function
A A
> >
e Eachlocal minimumi s a * A nonconvex function is not
global minimum convex

 Each local minimum is not
necessarily a global minimum



Convexity

Suppose we have a function f(z) : X — ).
e The value z* is a global minimum of f iff f(z*) < f(x),Vx € X.

e The value z* is a local minimum of f iff de s.t. f(z*) < f(z),Vx € [x* — €, 2™ + €].

Convex Function Nonconvex Function

1.0

0.8

0.6

0.4 1

0.29

Q'
A
0.0 Y T T f 0.0 ) . { /
0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

e Eachlocal minimum s a * A nonconvex function is not
global minimum convex

 Each local minimum is not
necessarily a global minimum



Convexity

Function f : RM — R is convex
ifVx e R xo e RM 0<¢t<1:

flx1+ (1 —t)xo) <tf(x1) + (1 —1)f(x2)

A

tf(z1) + (1 —t)f(x2)

|
fltzs + (1 —t)as) (/::
]

Function f : RM — Ris strictly convex
ifVx eRM x, c RM 0<t <1t

f(tXl + (1 — t)Xg) < tf(Xl) + (1 — t)f(Xg)

A

tf(z1) + (1= 1) f(z2)

|
f(txl + (1 — t)xz) "*'4 ............... :
|

Each local
minimum of a
convex function is
also a global
minimum.

A strictly convex
function has a
unique global

minimum.
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CONVEXITY AND LINEAR
REGRESSION



Convexity and Linear Regression

The Mean Squared Error function,
which we minimize for learning
the parameters of Linear
Regression, is convex!

...but in the general case it is not
strictly convex.




Gradient Descent & Convexity

e Gradient

descentis a
local
optimization
algorithm

 |fthe functionis

nonconvex, it
will find a Iocal
minimum, not
necessanl a

global minimum 7
e |fthe functionis

convex, it will
find a global
minimum
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