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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Sep. 21
– Due: Wed, Sep. 28 at 11:59pm 
– (only two grace/late days permitted)

• Exam conflicts form
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DECISION TREES WITH 
REAL-VALUED FEATURES
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Q&A
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Q: How do we learn a Decision Tree with real-
valued features?

A:



Q&A
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Q: How do we learn a Decision Tree with real-
valued features?

A: Make new discrete features out of the real-valued features and 
then learn the Decision Tree as normal! Here’s an example…



REGRESSION
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Regression
Goal:
– Given a training dataset of 

pairs (x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve 
or line) y’ = h(x) that best fits 
the training data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g. 

Deep Dream)
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Week 49 (December 5) forecast, using wILI data through week 47. During the week of
the first forecast, all of the available wILI values are below the CDC onset threshold, as shown
in Fig 2A. Predictions for the onset are concentrated near the actual value, and the error in the
point prediction is fairly small (1.58 weeks). Much of this error can be attributed to the sudden
jump in wILI at the onset, which corresponds to Thanksgiving week. The number of patients
seen per reporting provider in ILINet drops noticeably every season on Thanksgiving week and
around winter holidays; at these times, there is a systematic bias towards higher wILI values.

In the 2013–2014 season, the number of total visits dropped from 869362 on the week
before Thanksgiving to 661282 on Thanksgiving week, and from 808701 on week 51 to 607611
on week 52. The number of ILI visits also dropped slightly on Thanksgiving week (from 14995
to 13909, not as significant as the drop in total visits), then increased continuously until it

Fig 2. 2013–2014 national forecast, retrospectively, using the final revisions of wILI values, using
revised wILI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.

doi:10.1371/journal.pcbi.1004382.g002

Flexible Modeling of Epidemics with an Empirical Bayes Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004382 August 28, 2015 8 / 18



Regression
Q: What is the function that 
best fits these points?
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x

y Example: Dataset with only 
one feature x and one scalar 
output y



K-NEAREST NEIGHBOR 
REGRESSION
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k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y

16

x

y Example: Dataset with only 
one feature x and one scalar 
output y



k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

Algorithm 1: drawing 
the function is left as 
an exercise



k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2



DECISION TREE REGRESSION
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Decision Tree Regression

20

B
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+
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0 1
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0 1 0 1
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Decision Tree for Classification Decision Tree for Regression



Decision Tree Regression
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Dataset for Regression Decision Tree for Regression

Y A B C

4 1 0 0

1 1 0 1

3 1 0 o

7 0 0 1

5 1 1 0

6 0 1 1

8 1 1 0

9 1 1 1

B

A A

0 1

0 1 0 1

C

0 1

{4,1,3,7} {5,6,8,9}

{5,8,9}

{4,1,3,7,5,6,8,9}

{7} {4,1,3} {6}

{5,8} {9}

During learning, choose the attribute that 
minimizes an appropriate splitting 
criterion (e.g. mean squared error, mean 
absolute error)

7 2.7 6

6.5 9



LINEAR FUNCTIONS, RESIDUALS, 
AND MEAN SQUARED ERROR
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Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$

with 𝐱 ! ∈ ℝ% , 𝑦 ! ∈ ℝ

23

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦 = 𝑤𝑥 + 𝑏𝑦

𝑥



Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$

with 𝐱 ! ∈ ℝ% , 𝑦 ! ∈ ℝ
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Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦

𝑥!

𝑥"

𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑏

• A general linear function is 
𝑦 = 𝐰#𝐱 + 𝑏

• A general linear decision boundary is 
𝑦 = sign 𝐰#𝐱 + 𝑏



Regression Problems

Chalkboard
– Residuals
– Mean squared error
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OPTIMIZATION FOR ML
The Big Picture
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Unconstrained Optimization

• Def: In unconstrained optimization, we try 
minimize (or maximize) a function with no 
constraints on the inputs to the function

Given a function

Our goal is to find

27

For ML, these are 
the parameters

For ML, this is the 
objective function



Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the 

true goal 
(e.g. likelihood vs generalization error)

– Precision might not matter 
(e.g. data is noisy, so optimal up to 1e-16 might 
not help)

– Stopping early can help generalization error
(i.e. “early stopping” is a technique for 
regularization – discussed more next time)
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min vs. argmin
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y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?



min vs. argmin
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y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?
v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value



OPTIMIZATION METHOD #0:
RANDOM GUESSING
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Notation Trick: 
Folding in the Intercept Term
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Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).

Notation Trick: 
Folding in the Intercept Term
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Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).



Linear Regression as Function 
Approximation
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Contour Plots
Contour Plots
1. Each level curve labeled 

with value 
2. Value label indicates the 

value of the function for 
all points lying on that 
level curve

3. Just like a topographical 
map, but for a function
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J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

38

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

39

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

For Linear Regression:
• objective function is Mean 

Squared Error (MSE)
• MSE = J(w, b) 

= J(θ1, θ2) =
• contour plot: each line labeled with 

MSE – lower means a better fit
• minimum corresponds to 

parameters (w,b) = (θ1, θ2) that 
best fit some training dataset



Counting Butterflies

48

x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))



Linear Regression in High Dimensions
• In our discussions of linear regression, we 

will always assume there is just one output, 
y

• But our inputs will usually have many 
features:

x = [x1, x2,…,xM]T
• For example:

– suppose we had a drone take pictures of 
each section of forest

– each feature could correspond to a pixel in 
this image such that xm = 1 if the pixel is 
orange and xm = 0 otherwise

– the output y would be the number of 
butterflies in each picture

49

Q: How would you obtain ground truth 
data?



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

50
x

y

y = h*(x)
(unknown)

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through 

training examples (x(i),y(i))
• want h(x; θ(t)) that best 

approximates h*(x)
• enable generalization w/inductive 

bias that restricts hypothesis class 
to linear functions



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y



OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Optimization for ML

Chalkboard
– Derivatives
– Gradient

53
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Topographical Maps

Franconia Ridge by Jeff P / CC BY

https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/
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Topographical Maps

Franconia Ridge Trail  by Roy Luck / CC BY

https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/


Gradients
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θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



(Negative) Gradient Paths
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Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line 

search

64



Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M



Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation

68



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)

69

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)

70

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)

71

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
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θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



Linear Regression by Gradient Desc.
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression
– Gradient Descent for Linear Regression
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Gradient Calculation for Linear Regression
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[used by Gradient Descent]



GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function

76

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



Regression Loss Functions

In-Class Exercise:

Which of the following 
could be used as loss 
functions for training 
a linear regression 
model? 

Select all that apply.
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A. !(ŷ, y) = (ŷ)2

B. !(ŷ, y) = |ŷ − y|

C. !(ŷ, y) =
1

2
(ŷ − y)2

D. !(ŷ, y) =
1

4
(ŷ − y)4

E. !(ŷ, y) =

{

1

2
(ŷ − y)2 if |ŷ − y| ≤ δ

δ|ŷ − y|− 1

2
δ2 otherwise

F. !(ŷ, y) = log(cosh(ŷ − y))



CONVEXITY
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Convexity
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Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 80



Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 81



Convexity
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Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



CONVEXITY AND LINEAR 
REGRESSION
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Convexity and Linear Regression

86

The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!

…but in the general case it is not 
strictly convex.



Gradient Descent & Convexity
• Gradient 

descent is a 
local 
optimization 
algorithm

• If the function is 
nonconvex, it 
will find a local 
minimum, not 
necessarily a 
global minimum

• If the function is 
convex, it will 
find a global 
minimum
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