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Reminders

* Homework 9: Learning Paradigms
— Out: Fri, Dec 2

— Due: Fri, Dec 9 at 11:59pm
(only two grace/late days permitted)

* Exam 3 Practice Problems
— Out: Wed, Dec 7

* Exam 3
— Thu, Dec 15 (9:30am - 11:30am)




Crowdsourcing Exam Questions

In-Class Exercise Answer Here:

1. Select one of
lecture-level
learning objectives

2. Write a question
that assesses that
objective

3. Adjust to avoid
‘trivia style’
question


http://mlcourse.org/slides/10601-objectives.pdf

SIGNIFICANCE TESTING



Which classifier is better?

A
Goal: Given two classifiers: hy(x) |

and hg(x) which is better?

hs(x)

~

-

Common Approach: Evaluate each ]
classifier on a test set and report
which has higher accuracy.

>

accuracy




Two Sources of Variance

1. Randomness in training

2. Randomness in our test data



1. Randomness in training

Example: Assume we are training a deep neural network
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
< hg(x)") « train(D, seed = time in ms)
< hg(x)® « train(D, seed = time in ms)

\/
”‘ LN ]

< hg(x)®) «— train(D, seed = time in ms)

Solution: histogram
A

Solution: confidence interval

report variance of h, and hg
Ex:

* ha 45% +[- 5%
* hg 47% +[- 8%

count




2. Randomness in our test data

Recall: we assume x(~ p*(-) and y() = c*(x()

or (X(l)7 y(l))t' p*() )
Data: Assume the data is drawn from a generative
distribution p*(x|y)p*(y) where p*(y) is an even coin

flip and p*(x|y=red) is the red Gaussian and
p*(x|y=blue) is the blue Gaussian.

3 errrors
5 errrors

hA(X) hA(X)
A 3 errors A +

++ hg(x)

5 errors
hg(x)

Solution:
significance testing

10



Significance Testing in ML

“And because any medication or intervention usually has some real e

effect, you can always get a statistically significant result by :J::'\S;L‘;%

collecting so much data that you detect extremely tiny but
relatively unimportant differences. As Bruce Thompson wrote,
Statistical significance testing can involve a tautological logic in
which tired researchers, having collected data on hundreds of
subjects, then conduct a statistical test to evaluate whether there
were a lot of subjects, which the researchers already know,
because they collected the data and know they are tired. This
tautology has created considerable damage as regards the
cumulation of knowledge.”

— Alex Reinhart
Statistics Done Wrong: The Woefully Complete Guide

For machine learning, significance testing is
usually still answering an important question:

Did we evaluate our model on enough test
data to conclude that our improvement over
the baseline is surprising?



Significance Testing in ML

Paired Bootstrap Test

Key Idea: simulate the resampling of many test sets
Algorithm:

1.

4.

Draw B bootstrap samples, W v <N

S = {(xV, y) (x®), y2), ..., (x7, yM)}
with replacement from test data Dtest | Diey | = N

Letv=0

Forb=1,...,B : :
5(D’) = difference in accuracy
b
if 5(5( )) > 35(Dtest) between h, and hg on D’
V=V+

Return p-value as v/B

Ho = null hypothesis = performance of h, and hg is the

Sdme

12



EXAM LOGISTICS



Exam 3

Time / Location
— Time: Thu, Dec 15 at 8:36 9:30am - 11:30am
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room.
— Please watch Piazza carefully for announcements.
Logistics
— Covered material: Lectures 18 — 26
* (only K-Means from Lecture 26)

— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and
back)



Exam 3

* How to Prepare
— Attend (or watch) this exam review session
— Review practice problems
— Review homework problems

— Review the poll questions from each lecture

— Consider whether you have achieved the
learning objectives for each lecture [ section

— Write your cheat sheets



Topics for Exam 1

e Foundations

— Probability, Linear
Algebra, Geometry,
Calculus

— Optimization

* Important Concepts
— Overfitting
— Experimental Design

 (lassification

— Decision Tree
— KNN
— Perceptron

* Regression
— Linear Regression

21



Topics for Exam 2

e (lassification
— Binary Logistic
Regression
* Important Concepts

— Stochastic Gradient
Descent

— Regularization
— Feature Engineering

* Feature Learning
— Neural Networks

— Basic NN Architectures
— Backpropagation

* Learning Theory
— PAC Learning

e Generative Models

— Generative vs.
Discriminative

— MLE | MAP
— Naive Bayes

* Regression
— Linear Regression

22



Topics for Exam 3

* Graphical Models
— HMMs
— Learning and Inference
— Bayesian Networks

* Reinforcement
Learning
— Value Iteration
— Policy Iteration
— Q-Learning
— Deep Q-Learning

* Other Learning
Paradigms
— K-Means
— PCA
— Ensemble Methods
— Recommender Systems

23



MATERIAL COVERED ON EXAM 1



Supervised Binary Classification
* Step 1: training

Training Dataset:
label features

— Given: labeled training dataset . I el
3 - i€} none i

— Goal: learn a classifier from the . ISR
o o 5 = green  none low
training dataset

» Step 2: prediction

W

_ |

— Given: unlabeled test dai

: learned classifier
— Goal: predict a label for ¢

instance

* Step 3: evaluation

— Given: predictions from
: labeled test datas

— Goal: compute the test
rate (i.e. error rate on th

dataset)

Key question in
Machine Learning:

How do we learn the
classifier from data?




Medical Diagnosis

Interview Transcript

Date: Jan. 15, 2022

Parties: Matt Gormley and Doctor S.
Topic: Medical decision making

e Matt: Welcome. Thanks for interviewing with me
today.

*  Dr.S: Interviewing...?

. Matt: Yes. For the record, what type of doctor are
you?

e Dr.S:Who said I’'m a doctor?

e Matt: | thought when we set up this interview you
said—

*  Dr.S:I’ma preschooler.

. Matt: Good enough. Today, I’d like to learn how you
would determine whether or not your little brother
is allergic to cats given his symptoms.

e Dr.S: He’s not allergic.

. Matt: We haven’t started yet. Now, suppose he is
sneezing. Does he have allergies to cats?

. Dr. S: Well, we don’t even have a cat, so that doesn’t

make any sense.
e Matt: What if he is itchy; Does he have allergies?
*  Dr.S: No, that’s just a mosquito.

«  [Editor’s note: preschoolers unilaterally agree that
itchiness is always caused by mosquitos, regardless
of whether mosquitos were/are present.]

Matt: What if he’s both sneezing and itchy?

Dr. S: Then he’s allergic.

Matt: Got it. What if your little brother is sneezing
and itchy, plus he’s a doctor.

Dr. S: Then, thumbs down, he’s not allergic.

Matt: How do you know?

Dr. S: Doctors don’t get allergies.

Matt: What if he is not sneezing, but is itchy, and he
is a fox....

Matt: ...and the fox is in the bottle where the
tweetle beetles battle with their paddles in a puddle
on a noodle-eating poodle.

Dr. S: Then he is must be a tweetle beetle noodle
poodle bottled paddled muddled duddled fuddled
wuddled fox in socks, sir. That means he’s definitely
allergic.

Matt: Got it. Can | use this conversation in my
lecture?

Dr. S: Yes




Function Approximation

Quiz: Implement a simple function which returns -sin(x).

1y —y= —sin(X)%:C*(X)

h(x)

-1

A few constraints are imposed:
1. You can’t call any other trigonometric functions

2. You can call an existing implementation of sin(x) a few times
(e.g.100) to test your solution

3. You only need to evaluate it for x in [0, 2*pi]



od Machine Learning
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h(x)

1
+ -
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Decision Tree Learning Example

Dataset:

Output Y, Attributes Aand B

EEENEE
- 1 0o

1

+ 1
+ 1
+ 1
+ 1
+ 1
+ 1

0

[6+, 2-] [6+, 2-]
A B
PN PN
[0+, 0-] [6+,2-] [2+,2-] [4+, 0-]

Mutual Information
H(Y) = -2/8 log(2/8) - 6/8 log(6/8)

H(Y|A=0) = “undefined”

H(Y|A=1) = —(2/2)3 log(2/8) - 6/8 log(6/8)

= H(Y

H(Y|A) = P(A=0)H(Y|A=0) + P(A=1)H(Y|A=1)
= 0 + H(Y|A=1) = H(Y)

I(Y; A) = H(Y) - H(Y|A=1) = 0

H(Y|B=0) = -2/4 log(2/4) - 2/4 log(2/4)
H(Y|B=1) =-0log(0o) - 1log(1) =0
H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))

I(Y; B) = H(Y) - 4/8 H(Y|B=0) > 0



Overtfitting in Decision Tree Learning

Accuracy

06 On training data —— -
On test data —-—--
0.55 -
0.5 | 1 | 1 | 1 | 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)
Figure from Tom Mitchell



0o
0o
0o

N

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

4.9
5.3
4.9
5.7
6.3
6.7

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7







k-Nearest Neighbors

Suppose we have the
training dataset below. How should we label

N .
- the new point?
Y It depends on k:
"""" 3 “ Xnew
—i 2 if k=1, h(Xnew) = +1
8 -
+ , if K=3, h(xnew) =-1
7“‘-._ + it k=5, h(Xpew) = +1
(«:») HAYPPY2 :I;V; YERAR («-’))

I Il
I i
I i




Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

Answer: Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) +h(y) =
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.



™

_I:dOking ahead:
e We’ll see a number of

commonly used Linear k=
Classifiers

* Theseinclude:
— Perceptron
— Logistic Regression
— Naive Bayes (under
certain conditions)

—W

Machimes™

..........

3.5

BRI

itication

Key idea: Try to learn

.| this hyperplane directly

Tk

Y

| Directly modeling the

=~ hyperplane would use a

{ decision function:

h(x) = sign(0” x)

Y € {_17 _I_l}




Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R, then the online Perceptron algorithm
makes < (R/y)? mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

- —
- S

\

Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

— ’\V
-~ -
e mm == ™
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y, # of bu

Linear Regression by Rand. Guessing

J(0)=J(8,,8,) = = (s —67x"))’
Optimization Method #o: ()= )= ¥ ;@ )

\L

. 1.0
Random Guessing 0.000
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https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/

Linear Regression by Gradient Desc.

J(e) — J(e1, ez) = %i (y(i) _ ng(i)))z
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O
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Vo
5 &
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5 A
= A 0,
, , >
Iteration, t
y = h*(x)
N (unl;nown)
’
h(x; 6(4))
. h(x; 63))

K
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/
o h(x; ()
>
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t e1 ez J(ev ez)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2

1.0
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MATERIAL COVERED ON EXAM 2



Gradient Descent & Convexity

e Gradient

descentis a
local
optimization
algorithm

 |fthe functionis

nonconvex, it
will find a Iocal
minimum, not
necessanl a

global minimum 7
e |fthe functionis

convex, it will
find a global
minimum

\\\\“

\\\

“/;“'“““

‘

"«

m', i

\ 1y
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Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y) = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p* ()
y ~ p (- x1)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



MLE
Suppose we have data D = {z(W} ¥

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
™" = argmax Hp ()|9)
0

Maximum Likelihood Estimate (MLE)




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {xW,yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. @* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}



Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 9
worlds®

features o~ ----- > O_ -
3 Turian et aIOO => O
O O 2019 Hermann et al. A

Sun et al., 2011 Koo et al. 2014

O ?2008 tree
i O embeddings
! Socher et al
8 i O o
i A Hermann & Blunsom,
| / 2013
O ! /
: /
Zhou et al., i M tri
2005 ' word / StTg
i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
e
1 20 12 .. (1.2)° 15
2 1.3 17 ... (17)p
y 10-
10 11 19 .. (1.9)
0.5 -
0.0 -
~0.5 -

Linear Regression (poly=9)

2.0 2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
53



Goal: Learny=w'f(x) +b
where f(.) is a polynomial

Example: Linear Regression

basis function

e
1 20 12 .. (1.2)°
. (1.7)9
. (2.7 y

. (1.9)

29

100

1.3
0.1

1.1

0.9

1.7

2.7

1.9

1.5

. (15)

2.5 -

2.0 -

1.5 -

0.5 -

0.0 -

-0.5 -

1.0

Linear Regression (poly=9)

1.5

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.‘0
54



Regularization

Given objective function: J(0)
Goal is to find: 0 = argmin J(0) + Ar(0)
6

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

1
Choose form of r(0): M q
— Example: g-norm (usually p-norm):|[8]|, = (Z |8m|>

m=1

q 7(0) yields parame- name  optimization notes
ters that are...
0 ||@|lo=>1(0, #0) zero values Loreg. no good computa-
tional solutions
L ||0]]1 =D |0m] zero values Lireg. subdifferentiable

2 (||0]]2)% = > 02, small values L2reg. differentiable




Decision
Functions

Output

Linear Regression




Decision
Functions

Output

Perceptron




Decision
Functions

. y = hg(x) = 0(0' x

Logistic Regression

In-Class Example




Decision

Functions Neural Network

Output Yy = U(IBTZ)
Weights

2y =0 (ag’,x)
Hidden Layer 21 — U(aclr.x)

Weights
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Error Back-Propagation
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Training Differentiation Quiz

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest

integer.

Lz

sin(log(x))

y = exp(zz)

log()

Answer: Answers below are in the fc

A. [42,-72]
B. [72,-42]
C. [100,127]
D. [127,100]

T O m m

:
121
)

| 81
15

-
L

L2

rom matn i1mport T

f Define function

return exp(x*z) + x*z/log(x) + sin(log(x)) / (x*z)

f Inputs
(=23 2z=3; e=1e-8

f Finite difference check

rint("dydx =", dydx)
rint("dydz =", dydz)




Architecture #2: AlexNet
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RNN Language Model

[The ] [ bat ][made][noise][ at ][night][END]

[ R A R R

TP(WJhD Tp(wzlhz) TP(W3|h3) TP(W4lh4) T](Wslhs) T(W6|h6) TP(W7|h7)
> > > > >l— >

N N N N N\ N

h, h, h, h, hs he h

7
I e O e I I e O I e I I e I I e
\

/ N N N AN N N

[START] [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fg(wy,, ..., W,)) that conditions on
the vector h, = fo(Wesy ..., W,)




Sampling from an RNN-LM

N

VIOLA: Why, Salisbury must find his flesh and
thought That which I am not aps, not a man and
in fire, To show the reining of the raven and the
wars To grace my hand reproach within, and
not a fair are hand, That Caesar and my goodly

father's world; When | was heaven of presence
and our fleets, We spare with haucs bt cut thy

N

CHARLES: Marry, do |, sir; and | came to
acquaint you with a matter | am given, sir,
secretly to understand that your younger
brother Orlando hath a disposition to come in
disguised against me to try a fall. To-morrow,

snr | wrestle for my credit; and he that escapes
roken limb shall acquit him

council  am great Murdered a
master's ready there My powe
so much as hell: Some service i
bondman here, Would showAi

Which is the real
Shakespeare?!

is but young and tender; and,
Id be loath to foil him, as |
onour, if he come in:

KING LEAR: O, if you w eeble sight, the
courtesy of your law, Your sight and several
breath, will wear the gods With his heads, and
my hands are wonder'd at the deeds, So drop
upon your lordship's head, and your opinion
Shall be against your honour.

Example from

love to you, | came hither
to acquaint you wyj t either you might
stay him from his in ent or brook such

disgrace well as he sh ninto, in thatitis a
thing of his own search and altogether against
my will.

TOUCHSTONE: For my part, | had rather bear
with you than bear you; yet | should bear no
cross if | did bear you, for | think you have no
money in your purse.


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

PAC-MAN Learning
For some hypothesis h € H:

1. True Error
R(h)

2. Training Error
R(h)

Question 2:

What is the expected number
of PAC-MAN levels Matt will
complete before a Game-
Over?

A. 110

B. 11-20

C. 2130




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H |

Infinite |H|

Realizable

Agnostic

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 5 [log(|H|) + log(3)]
labeled examples are sufficient so that
with probability (1 — §) forall h € H we
have that |R(h) — R(h)| < e.

Thm. 3 N=O(% [VC(H)log(1) +log(5)])
labeled examples are sufficient so that
with probability (1 — d) all A € H with
R(h) = 0 have R(h) < .

Thm. 4 N = O(% [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that [R(h) — R(h)| < e.




Learning Theory & Model Selection

error
(i.e. lower =>»
good data fit)

Key Point:
we want
to tradeoff
between
low
training
error and
keeping H
simple
(low VC-
Dim)

Q:ls
Corollary
4 useful?

A: Yes!

A

w0 (|3 e 0n (3)])

bound from Corr. 4
R(h) true error

\ i

R(h) train error

A |
>
|
best tradeoft VC(H)
(i.e. complexity)

Ex: H = Linear Separators in RM

VC(H) = M+1
Q: In practice, how do we tradeoff between error and VC(H)?

A: Use a regularizer! That is, reducing the number of (effective) features

reduces the VC dimension. More features usually leads to a better fit to the
data.




Text Data
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Bag-of-
Words Model

10/31/22

X1 X2 X3 Xa X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) (Dr. Seuss)
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Bag-of-

Words Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

The Cat in the Hat
(by Dr. Seuss)

»Dr. Seuss

Source: https://en.wikipedia.org/wiki/The Cat in the Hat#/media/File:The Cat in the Hat.png

¥
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https://en.wikipedia.org/wiki/The_Cat_in_the_Hat

Bag-of-

Words Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0

Go, Dog. Go!
(by P. D. Eastman)

by P.D.Eastman

Source: https://en.wikipedia.org/wiki/Go, Dog. Go!#/media/File:Go Dog Go.jpg
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https://en.wikipedia.org/wiki/Go,_Dog._Go!

Bag-of-

Words Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

»Dr.Seuss £

One fish

One Fish, Two Fish, & two fish

Red Fish, Blue Fish
! &{ red fish
(by Dr. Seuss) .
blue fish

ipedia.org/wiki/One Fish, Two Fish, Red Fish, Blue Fish#/media/File:One Fish Two Fish Red Fish Blue Fish (cover art).jpg

73


https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish

Bag-of-

Words Model

10/31/22

X1 X2 X3 X4 X5 X6 y
(“hat”) (“cat”) (“dog”) (“fish”) (“mom”) (“dad”) | (Dr. Seuss)
1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1
0 0 0 0 0

Are You My Mother?
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Are You My Mother%3F#/media/File:Areyoumymother.gif
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Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



Recipe for Closed-form MAP
Estimation

Assume data was generated i.i.d. from some model

(i.e. write the generative story)
0~ p(g 0) and then for all i: x( ~ p(x|0©)

Write log-likelihood

{unp(0) = log p(8) + log p(x(M|@) + ... +log p(x(V)|0)
Compute partial derivatives

00ap(0)/00, = ...

aé[\/\AP(e)/aez =

aéMAp(e)/aeM — oo
Set derivatives to zero and solve for 6
00yar(0)/00,, =0 forallme{y, ..., M}

OMAP _

Compute the second derivative and check that {0) is concave down
at eMAP



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Givendata D = {x(®, y®M}N e Perceptron: hg(x) = sign(8” x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87x
(parameterized by 9)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — (@©T (ANT (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=0(W) o(W) x+b'"/)+b'¥)

o e Generative Models: hg(x) = argmax pg (X, y)

Y

4. Predict on new test example Xpew using hg(+) u

= ho(Xnew) o Naive Bayes: po(x,y) = po(y) || po(zm | v)

m=1

<>

Optimization Method

Objective Function
e Gradient Descent: 8 — 0 — vV J(0) :

) N
e SGD:0 — 0 — 7V J(0) o MLE: J(8) = — Y log p(x, y®)
for¢ ~ Uniform(1,...,N) im1

N
1 :
where J(0) = — E J® (9 N | |
( ) N pt ( ) e MCLE: J(O) _ _E :logp(y(z) |X(z))

i=1
e mini-batch SGD
e L2 Regularized: J'(8) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + A||0]|1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)
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Totoro’s Tunnel
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Hidden Markov Model

0184 5 90802 |0].5l08.02
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Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

I +I+ I= 6 of
us
\

only sek
my incoming

messages
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Forward-Backward Algorithm: Finds Marginals

= total weight of these - = total weight of these
- path preftgxes (@a+b+q) path suffixes (X +y +2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Viterbi Algorithm

V\"[UL] Alqo:
\ / {JS ‘t —r
0 /A : i Tel _\A (CND)/ wedyld &
- -~ . A + -
TW i«“ R S
Ay - . e ,-\
A =) 5 . - A/ -Lnfﬂis F
foe t-t,.T: Wy (v) = e (Q%(%);M |
Wi (YY) Syt 0
G b=l K oy &) Sad )
Wé(k)': V.“ltn( {,\)b‘()) Sk;,'l: ’F;f HMM
Jegn., "o Skik -~ f(ﬂ:k l‘{e-='>
b () = G J N
D % g
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k\%kgo\n\« X’*l) :L 1tw)l:‘> R

/
‘)t«
37



Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the
parameter values learned by an HMM?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Ad;j. Ad;j. Noun
funny | funny spot




Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the
parameter values learned by an HMM?

2. Suppose you a learning an HMM POS Tagger,
how many POS tag sequences of length 23 are
there?

3. How does an HMM efficiently search for the
most probable tag sequence given a 23-word
sentence?

Verb Noun Verb
see spot run
Verb Noun Verb
run spot run
Ad;j. Ad;j. Noun
funny | funny spot




Example: Voting for PA Senate Seat
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Figures from https://www.npr.org/2022/11/09/1131245958/fetterman-dr-oz-pennsylvania-senate-midterm-results



The “Burglar Alarm” example

* After you get this phone call,

suppose you learn that there was a FEarthquake

medium-sized earthquake in your

neighborhood. Oh, whew! Probably C Mlarm

not a burglar after all.

« Earthquake “explains away” the -
hypothetical burglar. Phone Call
* But then it must not be the case

that
Burglar 1L Earthquake | PhoneCall

even though
Burglar 1. Earthquake

Slide from William Cohen



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Ima gl ne that
With Emergency Sirens, Officials Say you WO rk at the
By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017 9 1 1 C a I I C e n t e r
g | in Dallas

- 2. You receive six
| ‘ calls informing
you that the
Emergency

Weather Sirens
are going off
3. What do you

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding C O n C I u d e 7
around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times °

Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html
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Sample Questions




Sample Questions




SIR|ES e Quest
dimpie Questions
i.o\ \ P

\/cs . Qi\"'\r No

(d) [2 pts.] Is S Tmargmally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

A=bric  R=Yes C=No

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S, E, A € {0,1}.

Figure 5: Directed graphical model for problem 5.



Sample Questions
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A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1.  How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2.  How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use
t,h,a~P(T,H,A|C=¢)

samples
5. How do we compute conditional marginal probabilities? P

PH|C=0)=... <:|



Gibbs Sampling

L (t+1)




MDP Example:
Multi-armed ba

* Single state:
S| =1

* Three actions:
A =1{1,2,3}

* Rewards are stochas
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RL:Value
Function

Example

5
3
2 3 [4 '
0 1 6
"2 ‘@’ 7
(2 if entering state 0 (safety)
R(s, a) = 4 3 if entering state 5 (field goal)

7 if entering state 6 (touch down)
| 0 otherwise
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Today's
lecture is
brought to

you by the
letter Q

Source: https://vignette1.wikia.nocookie.net/jamesbond/images a/The Four Qs - Profile (2).png/revision/latest?cb=2012110219511




Today's
lecture is

brought to
you by the
letter Q

* Inputs: reward function R(s, a),

transition probabilities p(s’ | s, a)

* Initialize V(s) = 0V s € § (orrandomly)

* While not converged, do:

* Forses§
* Fora € A
Q(s,a) =R(s,a) +vy z p(s'|s,a)V(s")

s'eS
- V(s) « max Q(s,a)

o

*Fors €S

n*(s) « argmax R(s,a) + y p(s'|s,a)V(s")

€
aEA s'es

- Returnt*
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Playing Go

* 19-by-19 board

* Players alternate
placing black and
white stones

* The goal is claim
more territory than
the opponent

The number of legal Go board states is ~10%7°
(https://en.wikipedia.org/wiki/Go_and
mathematics) compared to the number of
possible games of chess, ~10%2°
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Sample Questions

7.1 Reinforcement Learning Q L

A ""‘Dx(c_

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

200/ 6 (O Reinforcement learning is a kind of supervised learning problem because you
° B .
can treat the reward and next state as the label and each state, action pair as
the training data.

@/o C_ (O Reinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.
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Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

(O Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

(O Reinforcement learning differs from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not affect the data you would see in the future.

Q‘L

(1 point) True or False: Value iteration is better at balancing exploration and ex-
p101tat10n compared with policy iteration.

O True 33,/ o
C O False C7°/b

= Joic




Sample Questions

7.1 Reinforcement Learning

1. For the R(s,a) values shown on the arrows below, what

1s the corresponding optimal policy? Assume the discount
factor is 0.1

4
2. For the R(s,a) values shown on the arrows below, which

are the corresponding V*(s) values? Assume the discount T 2
factor is 0.1

3. For the R(s,a) values shown on the arrows below, which 2
are the corresponding Q*(s,a) values? Assume the

discount factor is 0.1

4. Could we change R(s,a) such that all the V*(s) values

change but the optimal policy stays the same? If so, show d\
how and if not, briefly explain why not.




Shortcut Example

118
Photo from https://www.springcarnival.org/booth.shtml


https://www.youtube.com/watch?v=MlJN9pEfPfE

PCA section in one slide...

1. Dimensionality reduction: 2. Random Projection:
J KxM
1 ® CD Paﬂioa,7 S‘-"‘“f“' M“Ln.x \/e K
1° -e ’—@) Pm]e(:l‘ AMJA B T\)LJ & V)‘Z(’)
> @ ® ® A A o S ST
4. Algorithm for PCA:

3. Definition of PCA: The option we’ll focus on:

Choose the matrix V that either...

1. minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example

e




Projecting MNIST digits

Task Setting:
1.  Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

3.0

2.5

- 2.0

- 1.5

- 1.0

0.5

T T 0.0

|

=
o
= -
N
W
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Sample Questions

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R?
are given, where the original features are the coordinates (z,y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1-2 sentences why it is not possible.

Dataset 1: Dataset 2:
¢ ¢
© ) ©
V¢ +
. R ¢ o © . o O o
. . .
s > ¢ +
> 4
N + T, e o + .+
o + 4 T O 4 ¥ 4
=$,
T gl ¥+
I I
A fbu.l_ +




K-Means Algorithm

unlabeled feature vectors
D = {x(, x(),..., x(N\)1

cluster centers ¢ = {c),..., c(K)}

until convergence:
—foriin {1,..., N}
z() « index j of cluster center nearest to x(
— forjin {1,...,K}
cl) « mean of all points assigned to cluster j
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K-Means

Example

3, iter=3)

~ Clustering with K-Means (k

(Geﬁ‘

(S
&
)

o°a

r

Z
«
&

&
<
=

i(e
€
a

3

125



K-Means

Example

2, iter=8)

~ Clustering with K-Means (k
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Sample Questions

°
2.2 Lloyd’s algorithm k | 2}/0

35 : : :
Q 3' R
25} . ] 25}
ol ‘ ] 2} -+
15} .o ] 150
Circle the image which depicts T . ’ i
the cluster center positions after 1 I . ’ o5
iteration of Floydsalgorithm. A
K osf S ] 05}
-MCGV\ S o5 0 05 1 15 2 25 3 5 0 o5 1 15 2 25 3
o \/ °
O Gl V. Wi v - N
'3, 3 3
251 L. N 251 L. 1 251
2r oL 2
el 15 15
1 +
ol 1 1
of 05 ' . 05 .. + .
05 0 Vgt ol i
1 o5 o0 o5 1 15 2 25 3 -0.5 AT ~05
s o o5 1 15 2 25 3 1 o5 0 o5 1 15 2 25 3

Figure 2: Initial data and cluster centers

€ o\ 7



Recommender Systems

NETFLIX

DJ] S
\ | «
N\ e

LIIX PEIZE

o

CONPLETED

Home Rules

Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank

O O ~N O O & W N =g

- -
N = O

Team Name

BellKor's Pragmatic Chaos

The Ensemble

Grand Prize Team

Opera Solutions and Vandelay United

Vandelay Industries !
PragmaticTheory
BellKor in BigChaos
Dace

Feeds2

BigChaos

Opera Solutions
BellKor

Best Test Score % Improvement Best Submit Time

0.8567
0.8567
0.8582
0.8588
0.8591
0.8594
0.8601
0.8612
0.8622
0.8623
0.8623
0.8624

10.06
10.06
9.90
9.84
9.81
9.77
9.70
9.59
9.48
9.47
9.47
9.46

2009-07-26 18:18:28
2009-07-26 18:38:22
2009-07-10 21:24:40
2009-07-10 01:12:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 08:14:09
2009-07-24 17:18:43
2009-07-12 13:11:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 17:19:11
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Weighted l\/\a]orlty Algorlthm

(Littlestone & Warmuth, 1994)

* Given: pool A of binary classifiers (that
you know nothing about)

 Data: stream of examples (i.e. online

learning setting) R g
* Goal: design a new learner that uses o ©
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 4

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 7



Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <:: These are
€ .
1. O(log|A|+m), if one algorithm of A makes mls’t’a ke
at most m mistakes. bounds” of the
y variety we saw
2. gl(log.tjl-l,;l + ;n)‘, if 1eia,ch tof a subpo.olt (;(f k for the
gorithms o makes at most m mistakes. Perceptron
3. O(log ]'—;:-l + %), if the total number of mis- algorithm
takes of a subpool of k algorithms of A is

at most m.



AdaBoost: Toy Example

H  =sign| 042
final

+ 0.92

131
Slide from Schapire NIPS Tutorial



Two Types of Collaborative Filtering

2. Latent Factor Methods

« Assume that both Serous
. 1 Braveheart
movies and users

. The Color Purple Amadeus _
live in some low- % B,

dimensional space 4
descrlblpg their @ o
propertles Sense and

]

Ocean’s 11

Geared Sensibility Geared
e Recommend a toward toward
movie based on its ~ females males
proximity to the s }
user in the latent ' The Lion King e
a1 Dumber
space : oAl
P The Princess Independence d}’
« Example Algorithm: Diaries Day - G"
. . . us
Matrix Factorization Escapist

132
Figures from Koren et al. (2009)



MF for Netflix Problem

Example

VONVIgvsYd [© [© |© |o |o |e |o
NYWOM ALLIYd |© |© |[o |o [o|o (o y
=
JILIVISNISSTAS [© [© o [o |e |o |o =
L
vavdoan [© (e |[o [T T [ B
<
gvsavasnin [© [© | |o |o |o |o E
ouan|o [o |[e|e|e e | Z
- N &M < 1 o N R
_ J L — =)
> T o
S B =
@ @ s
T S
o
VONVIGVSYd | © |
NVINOM ALLIYd | © |
31LIvVIS NI SS31d3qs (o | - 5
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(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



J

Recommending Movies

Question: O

Which of the following pieces of information about
user behavior could be used to improve a collaborative
filtering system?

Select all that apply

A. # of times a user watched a given movie

B. Total # of movies a user has watched

C. How often a user turns on subtitles

D. # of times a user paused a given movie

E. How many accounts a user is associated with

F. #of DVDs a user can rent at a time

G. None of the above

H = ‘('ox\c



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Givendata D = {x(®, y®M}N e Perceptron: hg(x) = sign(8” x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87x
(parameterized by 9)

e Discriminative Models: hg(x) = argmax X
(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)

(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — (@©T (ANT (1) (2)
0 ~ argmin Jp(0) po(y=1|x)=0(W) o(W) x+b'"/)+b'¥)

o e Generative Models: hg(x) = argmax pg (X, y)

Y

4. Predict on new test example Xpew using hg(+) u

= ho(Xnew) o Naive Bayes: po(x,y) = po(y) || po(zm | v)

m=1

<>

Optimization Method

Objective Function
e Gradient Descent: 8 — 0 — vV J(0) :

) N
e SGD:0 — 0 — 7V J(0) o MLE: J(8) = — Y log p(x, y®)
for¢ ~ Uniform(1,...,N) im1

N
1 :
where J(0) = — E J® (9 N | |
( ) N pt ( ) e MCLE: J(O) _ _E :logp(y(z) |X(z))

i=1
e mini-batch SGD
e L2 Regularized: J'(8) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + A||0]|1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



Learning Paradigms

Paradigm

Data

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

D={x®W,yW}Y, x~p*()andy=c*()
y( e R

y@ e {l,...,K}

y) e {+1,-1}

y(® is a vector

D={x"H, x~p*()

D= {X(i)7 y(i)}fill U {X(j)};'\gl

D = {(x(,yM), (x@) 42, (xB) 4B, .}
D = {x}¥  and can query y*) = ¢*(-) at a cost
D = {(sM, a0, (s@,a®), .}

D = {(sW),a® r1)) (52 a2 +@) 1



ML Big Picture

Learning Paradigms: Problem Formulation:
What data is available and What is the structure of our output prediction? ch‘
when? What form of prediction? boolean Binary Classification 50
° SUPerVise_d Ifjalmmg‘ categorical Multiclass Classification *38
. unsupervised learning : 8 cE >
el ea ordinal Ordinal Classification ] g =
*  reinforcement learning real Regression o W Y.Y
°  activelearning ordering Ranking e 5 < O
. imitation learning . . _ S c 8 0
. domain adaptation multiple discrete  Structured Prediction =Ry §
«  online learning multiple continuous (e.g. dynamical systems) o S %C«_S
B e both discrete & (e.g. mixed graphical models) | & = as.0 5
. recommender systems ¢ Qo <12 o
«  feature learning cont. <X Z>wn
0 manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
¢ ensemble learning Systems: . . -
. i isi : Which are the ideas driving

distant supervision i i 5] rrae Al
«  hyperparameter optimization 'd systems that are development of the field?

robust, efficient, adaptive, , L
effective? * inductive bias
Theoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
TP 3. Training (optimization/ . enerative vs. discriminative

L probabilistic el

. . : * deep nets, graphical models
O information theoretic 4. Hyperparameter tuningon _ o P’ fg p
O evolutionary search validation data AC learning

. 5. (Blind) Assessment ontest ~ *  distant rewards

O ML as optimization data



Course Level Objectives

You should be able to...

1.

Implement and analyze existing learning algorithms, including well-studied
methods for classification, regression, structured prediction, clustering, and
representation learning

Integrate multiple facets of practical machine learning in a single system: data
preprocessing, learning, regularization and model selection

Describe the the formal properties of models and algorithms for learning and
explain the practical implications of those results

Compare and contrast different paradigms for learning (supervised,
unsupervised, etc.)

Design experiments to evaluate and compare different machine learning
techniques on real-world problems

Employ probability, statistics, calculus, linear algebra, and optimization in
order to develop new predictive models or learning methods

Given a description of a ML technique, analyze it to identify (1) the expressive
power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the
size and complexity of the search space; (4) the computational properties of
the algorithm: (5) any guarantees (or lack thereof) regarding termination,
convergence, correctness, accuracy or generalization power.
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Team A (HW2, HW6) Team B (HW3, HW?7)




