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Reminders

• Homework 9: Learning Paradigms
– Out: Fri, Dec. 2
– Due: Fri, Dec. 9 at 11:59pm

(only two grace/late days permitted)

2



Crowdsourcing Exam Questions
In-Class Exercise
1. Select one of 

lecture-level 
learning objectives
http://mlcourse.org/slides/10601-objectives.pdf

2. Write a question 
that assesses that 
objective

3. Adjust to avoid 
‘trivia style’ 
question
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Answer Here:

http://mlcourse.org/slides/10601-objectives.pdf


CLUSTERING
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar 

data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g., 
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression 
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.



• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better”?
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OPTIMIZATION BACKGROUND
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Block Coordinate Descent
• Goal: minimize some objective 

𝜃⃗∗ = argmin
"

𝐽 𝜃⃗

• Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that one variable, keeping all 
the others fixed. 
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Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

𝛼⃗∗, 𝛽∗ = argmin
#,%

𝐽 𝛼⃗, 𝛽

• Idea: iteratively pick one block of variables (𝛼⃗ or 𝛽) 
and minimize the objective w.r.t. that block, 
keeping the other(s) fixed. 
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𝛼⃗ = argmin
%

𝐽 𝛼⃗, 𝛽⃗

𝛽⃗ = argmin
&

𝐽 𝛼⃗, 𝛽⃗

while not converged:



K-MEANS
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K-Means Algorithm (Derivation)
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Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!



K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)
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K-Means Algorithm (Derivation)
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K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply 
Block Coordinate Descent!



K-Means Algorithm
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This is an application of
Block Coordinate Descent!

The only remaining step is to figure out 
what the argmins boil down to…

1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) z← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C← argminC J(C, z)
(pick each cluster center to minimize distance)



K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
cj← argmin ∑ (|| x(i) - cj ||2)2
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cj i:z(i) = k

Likewise, the 
minimization over 

cluster centers 
decomposes, so we 

can find each cj
independently

The minimization 
over cluster 
assignments 

decomposes, so 
that we can find 

each z(i)

independently of 
the others



K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j
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K-MEANS EXAMPLE
K=3 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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K-MEANS EXAMPLE
K=2 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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INITIALIZING K-MEANS
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Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j
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Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data 

points)
2. Furthest point heuristic
3. K-Means++



Initialization for K-Means
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Example 1:
• Initialized randomly such 

that each cluster center is 
in a well separated 
Gaussian 

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
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Initialization for K-Means
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.

Example 2:
• Initialized 

randomly such 
that two centers 
are in the same 
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the 
final red cluster 
points moving 
arbitrarily far 
away!)



Initialization for K-Means
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Initialization for K-Means

• For k equal-sized Gaussians, 

Pr[each initial center is in a different Gaussian] ≈ !!
!!
≈ #

$!

• Becomes unlikely as k gets large. 

K-Mean Performance (with Random Initialization)

If we do random initialization, as k increases, it becomes more likely we 
won’t have perfectly picked one center per Gaussian in our initialization 

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan



Initialization for K-Means

54

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance
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Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 2:
• One outlier 

throws off 
the algorithm

• Poor 
performance
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Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).



Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱(𝟏), 𝐱(𝟐), … , 𝐱(𝒏) according to the distribution
• For j = 2, … , K

𝐏(𝐜𝐣 = 𝐱(𝐢)) ∝ 𝐦𝐢𝐧𝐣!%𝐣 𝐱(𝐢) − 𝐜𝐣!
𝟐
D+(𝐱𝐢)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal 
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137
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N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

Observations:
• Interpolates between random and 

farthest point initialization
• Solves the problem with Gaussian 

data
• And solves the outlier problem



Q&A
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Q: In k-Means, since we don’t have a validation set, how do we 
pick k?

A: Look at the training objective 
function as a function of k 
and pick the value at the 
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor 
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10 
times and pick the run that gives the lowest training objective 
function value.
The objective function is nonconvex, so we’re just looking for 
the best local minimum.

J(c, z)

k



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block 

coordinate descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest 
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective 

function with the (possibly) poor performance of 
random initialization
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FAIRNESS IN ML
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72Source: http://content.time.com/time/business/article/0,8599,1954643,00.html

http://content.time.com/time/business/article/0,8599,1954643,00.html


73

“A Chinese woman [surname Yan] was 
offered two refunds from Apple for her 
new iPhone X… [it] was unable to tell her 
and her other Chinese colleague apart.”

“Thinking that a faulty camera was to 
blame, the store operator gave [Yan] a 
refund, which she used to purchase 
another iPhone X. But the new phone 
turned out to have the same problem, 
prompting the store worker to offer her 
another refund … It is unclear whether she 
purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263


74Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

“As facial recognition systems become 
more common, Amazon has emerged as a 
frontrunner in the field, courting customers 
around the US, including police 
departments and Immigration and Customs 
Enforcement (ICE).”

https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
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“While it [the algorithm] didn't directly 
consider ethnicity, its emphasis on medical 
costs as bellwethers for health led to the 
code routinely underestimating the needs 
of black patients. A sicker black person 
would receive the same risk score as a 
healthier white person simply because of 
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447

https://science.sciencemag.org/content/366/6464/447


Word 
embeddings 
and 
analogies

� https://lamyiowce.github.io/word2viz/
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https://lamyiowce.github.io/word2viz/


77Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Different 
Types of 
Errors

True label Predicted label
True positive (TP) +1 +1
False positive (FP) −1 +1
True negative (TN) −1 −1
False negative (FN) +1 −1
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79Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

This is one possible definition of unfairness. 
We’ll explore a few others and see how they relate to one another. 

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


Running 
Example
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� Suppose you’re an admissions officer for CMU, 
deciding which applicants to admit to your program

� 𝒙 are the features of an applicant (e.g., 
standardized test scores, GPA) 

� 𝑎 is a protected attribute (e.g., gender), usually 
categorical i.e. 𝑎 ∈ {𝑎', … , 𝑎(}

� ℎ(𝒙, 𝑎) is your model’s prediction, which usually 
corresponds to some decision or action (e.g.,      
+1 = admit to CMU) 

� 𝑦 is the true, underlying target variable, usually 
thought of as some latent or hidden state (e.g., 
+1 = this applicant would be “successful” at CMU) 



Three 
Criteria for 
Fairness

84

� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for 

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
� All “good” applicants are accepted with the 

same probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ 𝒙, 𝑎
� For the purposes of predicting 𝑦, the 

information contained in ℎ 𝒙, 𝑎 is 
“sufficient”, 𝑎 becomes irrelevant

� Any two of these criteria are mutually exclusive in 
the general case



Achieving
Fairness

� Pre-processing data

� Additional constraints during training

� Post-processing predictions
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Three 
Criteria for 
Fairness
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� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for 

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
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A Fourth 
Criterion for 
Fairness

� Causality Bayesian networks to the rescue!

� Counterfactual fairness: how would an applicant’s 
probability of acceptance change if they were a 
different gender?

87
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Knowledge
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Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

