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Reminders

* Homework 8: Reinforcement Learning
— Out: Mon, Nov. 21
— Due: Fri, Dec. 2 at 11:59pm

 Exam 2 Exit Poll
— Due: Fri, Dec. 2 at 11:59pm

* Homework 9: Learning Paradigms
— Out: Fri, Dec. 2

— Due: Fri, Dec. 9 at 11:59pm
(only two grace/late days permitted)




Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

— Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D = {x",yW}Y,
y@® e R

y® e {1,...,K}
y@ e {+1,-1}
y(%) is a vector
D= (xO1,  x~pt()

predict {z(W}¥ where (V) ¢ {1,..., K}

convert eachx(® € RM toul” € RX with K << M
D= {X(i)7 y(i)}ﬁiﬁ U {X(j)};\zl

D — {(X(l), y(l))7 (X(2), y(2))7 (){(3)73](3))7 .

D = {x"W}  and can query y(¥) = c*(-) at a cost

D = {(sD,aM), (5),a2), ..}

D — {(3(1), a(1)77«(1))7 (5(2), al?) 7»(2)), .

x ~p*(-)andy = c*(+)



ML Big Picture

Learning Paradigms:

What data is available and

when? What form of prediction?
. supervised learning

. unsupervised learning

. semi-supervised learning

. reinforcement learning

. active learning

O imitation learning

O domain adaptation

O online learning

O density estimation

) recommender systems\>

. featureiearning
O manifold learning
ction

«  dimensionalityredu
g ensemble learnifig—

. distant supervision
0 hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

UDO0O0ODO

ML as optimization

Problem Formulation:

What is the structure of our output prediction? )
c
boolean Binary Classification T O
categorical Multiclass Classification 42’_8
ordinal Ordinal Classification - - =
. Q O wn
real Regression = 0 UY
ordering Ranking ;<: Lo
. . . L. o) < 8 0
multiple discrete  Structured Prediction sV g ch
multiple continuous (e.g. dynamical systems) o S 3 =5
both discrete & (e.g. mixed graphical models) = Q. ; g.g S
cont. TLz29

Facets of Building ML
Systems:

How to build systems that are

robust, efficient, adaptive,

effective?

1. Data prep

2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Big Ideas in ML:

Which are the ideas driving
development of the field?

* inductive bias

* generalization [ overfitting

*  bias-variance decomposition
e generative vs. discriminative
* deep nets, graphical models
*  PAClearning

e distant rewards



Outline for Today

We’ll talk about two distinct topics:

1. Ensemble Methods: combine or learn multiple
classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender
systems (the Netflix Prize) to motivate both
topics...



RECOMMENDER SYSTEMS



Recommender Systems

A Common Challenge:

— Assume you’re a company
selling items of some sort:
movies, songs, products,
etc.

— Company collects millions
of ratings from users of
their items

— To maximize profit [ user
happiness, you want to
recommend items that
users are likely to want



Recommender Systems

Hello, Matt
Browsing History ~  Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help Your Account ~

Your Amazon.com Your Browsing History Recommended For You Improve Your Recommendations Your Profile Learn More

Matt's You could be seeing useful stuff here! ‘

Amazon Sign in to get your order status, balances and rewards. Sign In ‘

Recommended for you, Matt

World of Anna Hibiscus 8 Books... Biodegradable Dental Floss with a Adsumudi Math Game - The Yamamotoyama - Jasmine Tea 16
A A i i 77 Refillable Glass Holder |... Monstrously Fun, Smart Game... bags
$34.98 #e fe dr A vz 1,806 e e e e 559 e Fe e Aol 531
70 pts $9.99 $17.99 $6.30
prime FREE Delivery prime FREE Delivery prime FREE Delivery prime FREE Delivery
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Recommender Systems
NETFLIX

Netflix Prize

Home Rules Leaderboard Update

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor’s
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

FAQ | Forum | Netfiix Home 13
© 1997-2009 Netflix, Inc. All rights reserved.




Recommender Systems

NETELIX

[ :,,I_' f ’_

Home Rules Leaderboard Update

FAQ | Forum
© 1997-2009 Netflix, Ir

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2008 we awarded the
$1M Grand Prize to team "BellKor's
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.
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Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos 2009-04-07 12:33:59
Opera Solutions 2009-07-24 00:34:07
BellKor 2009-07-26 17:19:11




ENSEMBLE METHODS



Recommender Systems
NETFLIX

Prize C OMPLE TED

Home Rules Leaderboard Update

Top performing systems
Leaderboard were ensembles

Showing Test Score. Click here to show quiz score

Rank Team Name Best ore % Improvement Best Submit Time
1 BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
2 The Ensemble 0.8567 10.06 2009-07-26 18:38:22
3 Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
5 Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
7 BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
8 Dace 0.8612 9.59 2009-07-24 17:18:43
9 Feeds?2 0.8622 9.48 2009-07-12 13:11:51
10 BigChaos 0.8623 947 2009-04-07 12:33:59
11 Opera Solutions 0.8623 947 2009-07-24 00:34:07

-
N

BellKor 0.8624 9.46 2009-07-26 17:19:11



Weighted l\/\a]orlty Algorlthm

(Littlestone & Warmuth, 1994)

 Given: pool A of binary classifiers (that
you know nothing about)

* Data: stream of examples (i.e. online

learning setting) R g
* Goal: design a new learner that uses PO
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 4

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 3 7



Weighted l\/\a]orlty Algorithm

(Littlestone & Warmuth, 1994)

Suppose we have a pool of T" binary classifiers A = {hq,..., hr}
where h; : RM — {41, —1}. Let oy be the weight for classifier h;.

CEE—
—

Algorithm 1 Weighted Majority Algorithm _— € (() —(
1 procedure WEIGHTEDMAJORITY(A, 5T

2: Initialize classifier weights oy = 1, Vt € {1,...,T}
3: for each training example (x, y) do
4: Predict majority vote class (splitting ties randomly)
+%
T
h(z) = sign <Z ahy (x))
t=1
5: if a mistake is made h(z) # y then -3
6: for each classifiert € {1,...,7} do

7: If he(z) # y, then oy < By




Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <‘: These are
€ H
1. O(log |A|+m), if one algorithm of A makes mls’t,a ke
at most m mistakes. bounds” of the
) variety we saw
2. gl(log.tll-l,;l + }n){ if iach tof a :ubpo.oi cl)(f k for the
gorithms of .A makes at most m mistakes. Perceptron
3. O(log 1%[ + %), if the total number of mis- algorlthm
takes of a subpool of k£ algorithms of A is

at most m.



ADABOOST



Comparison

Weighted Majority Algorithm

an example of an
ensemble method

assumes the classifiers are
learned ahead of time

only learns (majority vote)
weight for each classifiers

AdaBoost

* anexample of a boosting
method

* simultaneously learns:
— the classifiers themselves

— (majority vote) weight for
each classifiers



AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

Slide from Schapire NIPS Tutorial

30



AdaBoost: Toy Example

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

S . —I— _I__ +
©

B - + S +

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

£3=0.14

Slide from Schapire NIPS Tutorial

33



AdaBoost: Toy Example

H =sign | 042
final

+0.92

34
Slide from Schapire NIPS Tutorial



AdaBoost

Given: (x1,y1), - (Tm, Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D, (i) = 1/m.
Fort=1,...,T:

e Train weak learner using distribution D;.
e Get weak hypothesis h; : X — {—1,+1} with error

er = Priwp, [he(@:) # yil -

1 —
e Choose oy = 31n ( et).
e Update:

Dy(i) e~ if hy(z;) = yi

{ = S 0,0 0= Sl i)
. _ Dy (i) exp(—auyihy (i)
("‘ Zt

where Z; 1s a normalization factor (chosen so that ;. will be a distribution).

Output the final hypothesis:

XT: oztht(:c)) :

t=1

Algorithm from (Freund & Schapire, 1999)



AdaBoost

1.0-
q -
g
=)
=
b -
= = 0.5-
5 z '
‘ . \'esjr;i
© T 1060‘“g
© -0.5
# rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 35,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Figure from (Freund & Schapire, 1999)
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Learnin§ Objectives ]
®1: "*)\"-“ U%‘F“MS o LKV‘CZ (PCA/ e"‘*"‘""/"‘")
Ensemble Methods [ Boosting

You should be able to...
1. Implement the Weighted Majority Algorithm
2. Implement AdaBoost

3. Distinguish what is learned in the Weighted
Majority Algorithm vs. Adaboost

4. Contrast the theoretical result for the
Weighted Majority Algorithm to that of
Perceptron

5. Explain a surprisingly common empirical result
regarding Adaboost train/test curves



RECOMMENDER SYSTEMS



Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos 2009-04-07 12:33:59
Opera Solutions 2009-07-24 00:34:07
BellKor 2009-07-26 17:19:11




Recommender Systems
NETFLIX

lix Priz

Home Rules Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank Team Name Best Test Score % Improvement Best Submit Time

BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
The Ensemble 0.8567 10.06 2009-07-26 18:38:22
Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
Dace _ 0.8612 9.59 2009-07-24 17:18:43
Feeds?2 0.8622 9.48 2009-07-12 13:11:51
BigChaos 0.8623 947 2009-04-07 12:33:59
Opera Solutions 0.8623 9.47 2009-07-24 00:34:07
BellKor 0.8624 9.46 2009-07-26 17:19:11




Recommender Systems

* Setup:
— |tems:

movies, songs, products, etc.
(often many thousands)

— Users:
watchers, listeners, purchasers, etc.
(often many millions)

— Feedback:
5-star ratings, not-clicking ‘next’,
purchases, etc.
* Key Assumptions:

— Can represent ratings numerically
as a user/item matrix

— Users only rate a small number of
items (the matrix is sparse)

Alice
Bob 3
Charlie | 3

47



Two Types of Recommender Systems

Content Filtering Collaborative Filtering

* Example: Pandora.com * Example: Netflix movie
music recommendations recommendations
(Music Genome Project) * Pro: Does not assume

* Con: Assumes access to access to

about about items (e.g. does not

items (e.g. properties of a need to know about movie
song) genres)

* Pro: Gotanewitemto * Con: Does not work on
add? No problem, just be new items that have no
sure to include the side ratings

information



COLLABORATIVE FILTERING



Collaborative Filtering

* Everyday Examples of Collaborative Filtering...
— Bestseller lists
— Top 40 music lists
— The “recent returns” shelf at the library
— Unmarked but well-used paths thru the woods
— The printer room at work
— “Read any good books lately?”

* Common insight: personal tastes are correlated

— If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

— especially (perhaps) if Bob knows Alice

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

Serious
The Color Purple Amadeus Eg
et P
@ Lethal Weapon
Senseand
Geared Sensibility | Ocearts 11] -y Geared
8 females males
i 5
Joe — i
The Lion King Bash o
a1 Dumber
The Princess Independence| |- eﬁ
Diaries Day =4
Gus

Escapist

51
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

In the figure, assume that
a green line indicates the
movie was watched

-
-

Algorithm:

ol

>, &

Find neighbors based
on similarity of movie
preferences

. Recommend movies
that those neighbors
watched

52
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
2. Latent Factor Methods

e Assume that both
movies and users

The

Color Purple

live in some low-
dimensional space

describing their
properties
Geared
e Recommend a toward

movie based on its  females

Sense and
Sensibility

proximity to the

ot

user in the latent

space

* Example Algorithm:

The Princess

Diaries

Matrix Factorization

Figures from Koren et al. (2009)

Serious

t Braveheart

Amadeus

Lethal Weapon

The Lion King Dumb and
a1 Dumber
Independence d}_)
Day R
Gus
Escapist
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Recommending Movies

Question: Q 2

Applied to the Netflix Prize
problem, which of the following
methods always requires side
information about the users and
movies?

Select all that apply ;-\oﬁc

collaborative filtering
latent factor methods
ensemble methods
content filtering
neighborhood methods
recommender systems

Ommo O w

\

Answer:

Ry

|Corert Gillers

(=—=

Tﬁ\\v\ L) . Jf‘ kp\7 .

=

el

G




MATRIX FACTORIZATION



Matrix Factorization

* Many different ways of factorizing a matrix

 We’ll consider three:
1.  Unconstrained Matrix Factorization

2. Singular Value Decomposition
3. Non-negative Matrix Factorization

* MF is just another example of a common
recipe:
1. define a model

2. define an objective function
3. optimize with SGD



Matrix Factorization

Whiteboard

— Background: Low-rank Factorizations
— Residual matrix



MF for Netflix Problem

Example
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(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



Regression vs. Collaborative Filtering

[ ] [ ] [ ] [ ]
Reg{essmn y Collaborative Filtering
KX X, X4 Yo
(HENERE % | |
TRAINING %
Y |
4 p
) NO
% DEMARCATION
) I BETWEEN
TRAINING AND
f ) TEST ROWS
% TEST 2’;/
7z |~ 2 2
% \ A4
<€ > <€ o
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

Figures from Aggarwal (2016)



UNCONSTRAINED MATRIX
FACTORIZATION



Unconstrained Matrix Factorization

Whiteboard
— Optimization problem
—SGD
— SGD with Regularization
— Alternating Least Squares
— User/item bias terms (matrix trick)



Unconstrained Matrix Factorization

SGD for UMF:
l,QLl[e wot Covmgbé:
D Sl G 3) Son Z vifely ot adss
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Unconstrained Matrix Factorization
SGD for UMF:
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Unconstrained Matrix Factorization

Alternating Least Squares (ALS) for UMF:
Blocle  Cosdd. \}—su-rl— :
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Matrix Factorization

Example

N
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Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)
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Matrix Factorization

Mean Loss

Figure from Gemulla et al. (2011)

1.4

1.2

1.0

0.8

0.6

o LBFGS
A SGD
+ ALS

ALS = alternating least squares

epoch




SVD FOR COLLABORATIVE
FILTERING



Singular Value Decomposition
for Collaborative Filtering

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV'

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we have the SVD of our ratings matrix
R =QXPT,

but then we truncate each of Q), >}, and P s.t. () and P have only k£
columnsand X is k x k:

R~ Qiiip Pl
For collaborative filtering, let:

U= Qrls
V £ P,

1
= U,V = argmin ~||R — UV'||3
UV 2

s.t. columns of U are mutually orthogonal
s.t. columns of V are mutually orthogonal

Theorem: If R fully
observed and no
regularization, the
optimal UV' from
SVD equals the
optimal UV' from
Unconstrained MF



NON-NEGATIVE MATRIX
FACTORIZATION



Implicit Feedback Datasets

* What information does a five-star rating contain?
WKW W
* Implicit Feedback Datasets:
— In many settings, users don’t have a way of expressing dislike for an
item (e.g. can’t provide negative ratings)
— The only mechanism for feedback is to “like” something
* Examples:
— Facebook has a “Like” button, but no “Dislike” button
— Google’s “+1” button
— Pinterest pins

— Purchasing an item on Amazon indicates a preference for it, but
there are many reasons you might not purchase an item (besides

dislike)
— Search engines collect click data but don’t have a clear mechanism
for observing dislike of a webpage

Examples from Aggarwal (2016)



Non-negative Matrix Factorization

Constrained Optimization Problem:

1
U,V = argmin = ||[R — UV?||3
Uy 2

S.t. Uz'j > 0
S.t. Vt,;j > ()

Multiplicative Updates: simple iterative
algorithm for solving just involves multiplying a
few entries together



Fighting Fire with Fire: Using Antidote Data to Improve
Polarization and Fairness of Recommender Systems

Bashir Rastegarpanah Krishna P. Gummadi Mark Crovella
Boston University MPI-SWS Boston University
bashir@bu.edu gummadi@mpi-sws.org crovella@bu.edu

where $; = ¥;cq upu] + 00T + A1,

By using (9) instead of the general formula in (5) we can signif-
icantly reduce the number of computations required for finding
the gradient of the utility function with respect to the antidote
data. Furthermore, the term ngUTSJT' appears in all the partial

derivatives that correspond to el in jof X and can
be precomputed in each iteration of the algorithm and reused for
computing partial derivatives with respect to different antidote
users.

5 SOCIAL OBJECTIVE FUNCTIONS

The previous section developed a general framework for improving
various properties of recommender systems; in this section we show
how to apply that framework specifically to issues of polarization
and fairness.

As described in Section 2, polarization is the degree to which
opinions, views, and sentiments diverge within a population. Rec-
ommender systems can capture this effect through the ratings that
they present for items. To formalize this notion, we define polariza-
tion in terms of the variability of predicted ratings when compared
across users. In fact, we note that both very high variability, and
very low variability of ratings may be undesirable. In the case of
high variability, users have strongly divergent opinions, leading to
conflict. Recent analyses of the YouTube recommendation system
have suggested that it can enhance this effect [29, 30]. On the other
hand, the convergence of user preferences, i.e,, very low variability
of ratings given to each item across users, corresponds to increased
homogeneity, an undesirable ph that may occur as users
interact with a recommender system [11]. As a result, in what
follows we consider using antidote data in both ways: to either
increase or decrease polarization.

As also described in Section 2, unfairness is a topic of growing
interest in machine learning. Following the discussion in that sec-
tion, we consider a recommender system fair if it provides equal
quality of service (ie., prediction accuracy) to all users or all groups
of users [36].

Next we formally define the metrics that specify the objective
functions associated with each of the above objectives. Since the
gradient of each objective function is used in the optimization algo-
rithm, for reproducibility we provide the details about derivation
of the gradients in appendix A.2.

P

5.1 Polarization

To capture polarization, we seek to measure the extent to which the
user ratings disagree. Thus, to measure user polarization we con-
sider the estimated ratings X, and we define the polarization metric
as the normalized sum of pairwise euclidean distances between
estimated user ratings, ie., between rows of X. In particular:

Rpat(X) = =7 37 37 &% - &)1 (10
k=11>k

The normalization term ;&7 in (10) makes the polarization metric
identical to the following definition: *

d
21
Rpot(X) = 3 3" of (1)
=1

where o7 is the variance of estimated user ratings for item j. Thus
this polarization metric can be interpreted either as the average of
the variances of estimated ratings in each item, or equivalently as
the average user disagreement over all items.

5.2 Fairness

Individual fairness. For each user i, we define £;, the loss of user

i, as the mean squared estimation error over known ratings of user

i
P& - x|

P @ —xOll a2)

19|
Then we define the individual unfairness as the variance of the user
losses:®

i

. 1 &
Ringo(X.X) = = t-&) (13)
To improve individual fairness, we seek to minimize R; . .
Group fairness. Let I be the set of all usersfitems and G =
{G1 ....Gg} be a partition of users/items into g groups, ie., [ =
Uieq,....q} Gi. We define the loss of group i as the mean squared
estimation error over all known ratings in group i:

L. = IPag, (X - Xl s
o 12,

For a given partition G, we define the group unfairness as the
variance of all group losses:

g

5 1

Ryrp(X,X,G) = = 3 3 (Lg — L) (15)
9 Stk

Again, to improve group fairness, we seek to minimize Ry,p.

5.3 Accuracy vs. Social Welfare

Adding antidote data to the system to improve a social utility will
also have an effect on the overall prediction accuracy. Previous
works have considered social objectives as regularizers or con-
straints added to the recommender model (eg, [8, 25, 37]), implying
a trade-off between the prediction accuracy and a social objective.

However, in the case of the metrics we define here, the rela-
tionship is not as simple. Considering polarization, we find that in
general, increasing or decreasing polarization will tend to decrease
system accuracy. In either case we find that system accuracy only
declines slightly in our experiments; we report on the specific val-
ues in Section 6. Considering either individual or group unfairness,
the situation is more subtle. Note that our unfairness metries will
be exactly zero for a system with zero error (perfect accuracy). Asa

4. )
AWe can derive it by rewriting (10) as Ryy (%) = 5 > ni 3 sy - 2y
J=t k=tink
¥Note that for & set of equally likely values xi, . .., Xp the variance can be expressed
without referring to the mean as: % L[x. -
i
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Summary

* Recommender systems solve many real-world
(*large-scale) problems

* Collaborative filtering by Matrix Factorization
(MF) is an efficient and effective approach

* MF is just another example of a common
recipe:

1.
2.

3.

define a model
define an objective function

optimize with your favorite black box optimizer
(e.g. SGD, Gradient Descent, Block Coordinate Descent aka.
Alternating Least Squares)



Learning Objectives

Recommender Systems

You should be able to...

1. Compare and contrast the properties of various families of
recommender system algorithms: content filtering,
collaborative filtering, neighborhood methods, latent factor
methods

2. Formulate a squared error objective function for the matrix
factorization problem

3. Implement unconstrained matrix factorization with a variety of
different optimization techniques: gradient descent, stochastic
gradient descent, alternating least squares

4. Offerintuitions for why the parameters learned by matrix
factorization can be understood as user factors and item factors



EXTRA SLIDES ON UMF



Unconstrained Matrix Factorization

In-Class Exercise

Derive a block coordinate descent algorithm
for the Unconstrained Matrix Factorization
problem.

* User vectors: * Set of non-missing entries
w, € R" Z = {(u,1) : vy; is observed}
* |tem vectors: * Objective:
T
h, e R argmin Z (Vs — nghi)2
woh ez

* Rating prediction:
vui = W, hy
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Matrix Factorization

(with matrices)

* User vectors:
(Wu)' €R"

* |tem vectors:
H,; e R"

* Rating prediction:

Vui

W H|.;

Figures from Koren et al. (2009)

H

ik

V

Figures from Gemulla et al. (2011)g.



Matrix Factorization
(with vectors)

e User vectors: i =
Diaries |lndep';:ydeme| d/
w, € R" | =8

Figures from Koren et al. (2009)

* |tem vectors:

h;, e R"

* Rating prediction:
T
Vi = W, h;
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Matrix Factorization
(With VECtOI'S) Geaed Scear o
* Set of non-missing entries: A e
Z = {(u,1) : vy; is observed} = | =ED

* Objective:

83



Matrix Factorization
(with vectors)

* Regularized Objective:
argmin Z (Vs — Wi hy;)?

+A( ZHW@HQ _I_ZHhuH

Braveheart
The Color Purple [ Amadeus | %
&) 2P

-4

‘ Lethal Weapon
Senseand |'
Geared Sensibili | Ocear's 11} -~y Geared
toward
m

¢ toward
females males
g p
] The Lion IG 9| [Dumb and
{ Dumber
Independence| |- @===¢"
Day S
Gus
Escapist

Figures from Koren et al. (2009)
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o o o [ Amadeus |
Matrix Factorization Gl
(with vectors) s I
* Regularized Objective: y
argmin Z (Vi — Wi hy)? ir-n 1 =4
w,h . |
’ (u,1)€Z Figures from Koren et al. (2009)

+A( ZHW@W _I_ZHhuH

* SGD update for random (u,i):
Cui < Vyi — WL h;
Wy — Wy + y(eyihy — Awy,)
h; < h; + y(ew;wy — Ah;)
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Matrix Factorization

(with matrices)

* User vectors:
(Wu)' €R"

* |tem vectors:
H,, € R"

* Rating prediction:

Vui

W H|.;

Figures from Koren et al. (2009)

H

H.,;

V

Figures from Gemulla et al. (2011);



Matrix Factorization
(with matrices)

* SGD

require that the loss can be written as

L= ) UVij, Wi, H.)
(2,7)€Z

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W and H
while not converged do {step}

Select a training point (%, j) € Z uniformly at random.

W;* — Wz* - CnN%l(VU’ W":*’ H*J)

H.,j < H.; — €N 557 1(Vij, Wis, Hoj)
W,;* «— W,,L*
end while step size

Figure from Gemulla et al. (2011)

Serious

t Braveheart
The Color Purple [A_mam
-4
@]
Senseand |'
- ocsis ] [y e
toward . toward
females 8 males
-
{z Nt
ﬁ. Dave
The Lion King Dumb and
{ Dumber
|Independentel =Y
Diaries Day R4
Gus

Escapist

Figures from Koren et al. (2009)

H

H.,;

V

Figure from Gemulla et al. (2011)87



