

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Principal Component Analysis (PCA)

Matt Gormley Lecture 24 Nov. 28, 2022

Reminders

- Homework 8: Reinforcement Learning
 - Out: Mon, Nov. 21
 - Due: Fri, Dec. 2 at 11:59pm
- Homework 9: Learning Paradigms
 - Out: Fri, Dec. 2
 - Due: Fri, Dec. 9 at 11:59pm
 (only two grace/late days permitted)

DIMENSIONALITY REDUCTION

Examples of high dimensional data:

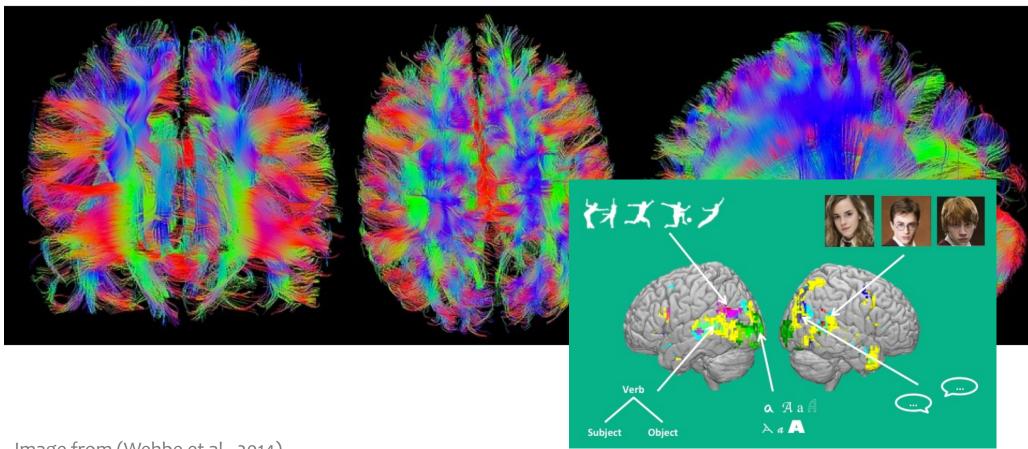
High resolution images (millions of pixels)

Examples of high dimensional data:

Multilingual News Stories
 (vocabulary of hundreds of thousands of words)

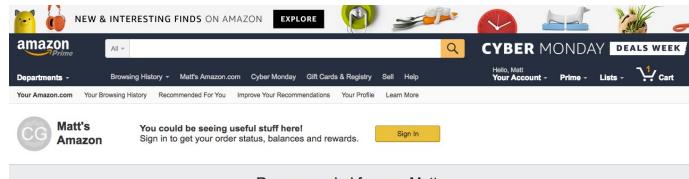
Examples of high dimensional data:

Brain Imaging Data (100s of MBs per scan)

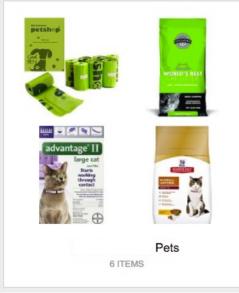


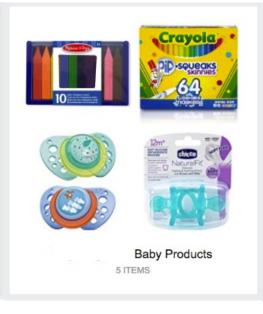
Examples of high dimensional data:

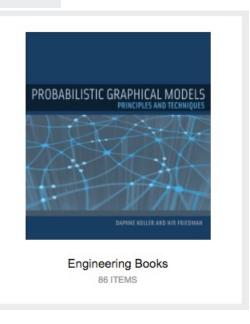
Customer Purchase Data



Recommended for you, Matt







Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

Examples:

PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

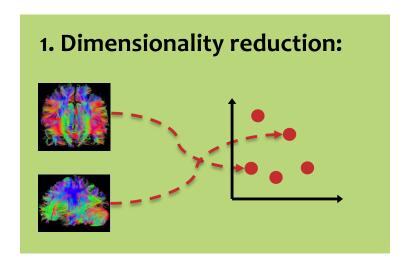
Useful for:

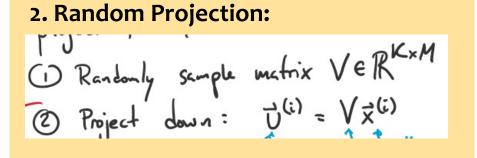
- Visualization
- More efficient use of resources (e.g., time, memory, communication)
- Statistical: fewer dimensions → better generalization
- Noise removal (improving data quality)

Shortcut Example

Shortcut Example

This section in one slide...





3. Definition of PCA:

Choose the matrix V that either...

- 1. minimizes reconstruction error
- consists of the K eigenvectors with largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we'll focus on:

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.
Play some tricks to keep
things efficient.

5. An Example

DIMENSIONALITY REDUCTION BY RANDOM PROJECTION

Random Projection

Goal: project from M-dimensions down to K-dimensions

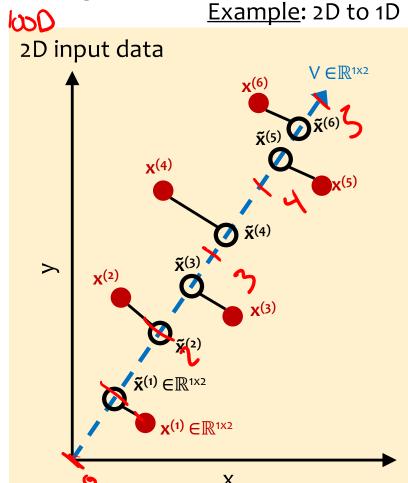
Data:

$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}^{(i)} \in \mathbb{R}^M$

Algorithm:

- 1. Randomly sample matrix: $\mathbf{V} \in \mathbb{R}^{K \times M}$ $V_{km} \sim \mathsf{Gaussian}(0,1)$
- 2. Project down: $\mathbf{u}^{(i)} = \mathbf{V} \mathbf{x}^{(i)}$

3. Project up: $\tilde{\mathbf{x}}^{(i)} = \mathbf{V}^T \mathbf{u}^{(i)} = \mathbf{V}^T (\mathbf{V}\mathbf{x}^{(i)})$ 8 X 1D projection onto the real line



Random Projection

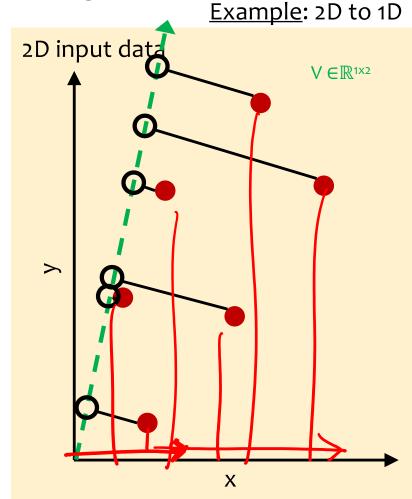
<u>Goal</u>: project from M-dimensions down to K-dimensions

Data:

$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}^{(i)} \in \mathbb{R}^M$

Algorithm:

- 1. Randomly sample matrix: $\mathbf{V} \in \mathbb{R}^{K \times M}$ $V_{km} \sim \mathsf{Gaussian}(0,1)$
- 2. Project down: $\mathbf{u}^{(i)} = \mathbf{V} \mathbf{x}^{(i)}$
- 3. Project up: $\mathbf{x}^{(i)} = \mathbf{V}^T \mathbf{u}^{(i)} = \mathbf{V}^T (\mathbf{V} \mathbf{x}^{(i)})$



Problem: a random projection might give us a poor low dimensional representation of the data

Johnson-Lindenstrauss Lemma

- **Q:** But how could we ever hope to preserve any useful information by randomly projecting into a low-dimensional space?
- A: Even random projection enjoys some surprisingly impressive properties. In fact, a standard of the J-L lemma starts by assuming we have a random linear projection obtained by sampling each matrix entry from a Gaussian(0,1).

An Elementary Proof of a Theorem of Johnson and Lindenstrauss

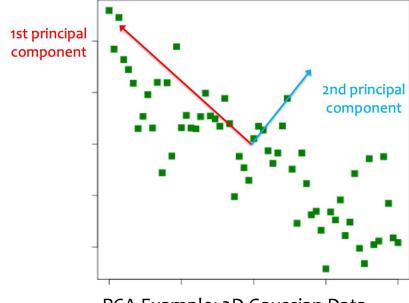
Sanjoy Dasgupta,¹ Anupam Gupta²

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high dimensional Euclidean space can be mapped into an $O(\log n/\epsilon^2)$ -dimensional Euclidean space such that the distance between any two points changes by only a factor of $(1 \pm \epsilon)$. In this note, we prove this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 22: 60-65, 2002

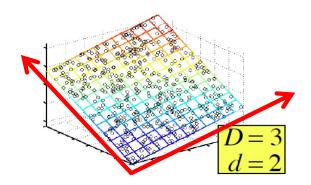
DEFINITION OF PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA)

- Assumption: the data lies on a low Kdimensional linear subspace
- Goal: identify the axes of that subspace, and project each point onto hyperplane
- Algorithm: find the K eigenvectors with largest eigenvalue using classic matrix decomposition tools



PCA Example: 2D Gaussian Data



Data for PCA

$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N} \qquad \mathbf{X} = \begin{bmatrix} (\mathbf{x}^{(1)})^T \\ (\mathbf{x}^{(2)})^T \\ \vdots \\ (\mathbf{x}^{(N)})^T \end{bmatrix}$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^M$$

We assume the data is centered

$$\mu = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} = \mathbf{0}$$

Q: What if your data is **not** centered?

A: Subtract off the sample mean

$$\tilde{\mathbf{x}}^{(i)} = \mathbf{x}^{(i)} - \mu, \ \forall i$$

Sample Covariance Matrix

The sample covariance matrix $\Sigma \in \mathbb{R}^{M \times M}$ is given by:

$$\Sigma_{jk} = \frac{1}{N} \sum_{i=1}^{N} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_j)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_j^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k) - \sum_{k \in \mathcal{N}} (x_k^{(i)} - \mu_k)(x_k^{(i)} - \mu_k)$$

Since the data matrix is centered, we rewrite as:

$$\mathbf{\Sigma} = \frac{1}{N} \mathbf{X}^T \mathbf{X}$$

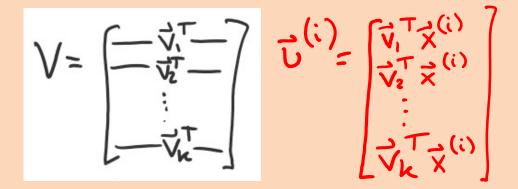
$$\mathbf{X} = egin{bmatrix} (\mathbf{x}^{(1)})^T \ (\mathbf{x}^{(2)})^T \ dots \ (\mathbf{x}^{(N)})^T \end{bmatrix}$$

Principal Component Analysis (PCA)

Linear Projection:

Given KxM matrix \mathbf{V} , and Mx1 vector $\mathbf{x}^{(i)}$ we obtain the Kx1 projection $\mathbf{u}^{(i)}$ by:

$$\mathbf{u}^{(i)} = \mathbf{V} \, \mathbf{x}^{(i)}$$



Definition of PCA:

PCA repeatedly chooses a next vector \mathbf{v}_j that minimizes the reconstruction error s.t. \mathbf{v}_j is orthogonal to $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{j-1}$.

Vector \mathbf{v}_i is called the **jth principal component**.

Notice: Two vectors a and b are **orthogonal** if aTb = 0.

→ the K-dimensions in PCA are uncorrelated

Vector Projection

Recall: Projector

length of projection of
$$\vec{x}$$
 anto \vec{v}
 $q = \vec{V} \vec{x}$ if $||\vec{v}||_2 = 1$
 $||\vec{v}||_2$ otherwise

 $\vec{v} = \vec{v} \vec{v} \vec{v}$ if $||\vec{v}||_2 = 1$
 $||\vec{v}||_2$ otherwise

 $||\vec{v}||_2 = 1$
 $||\vec{v}||_2 = 1$

Principal Component Analysis (PCA)

Whiteboard

Objective functions for PCA

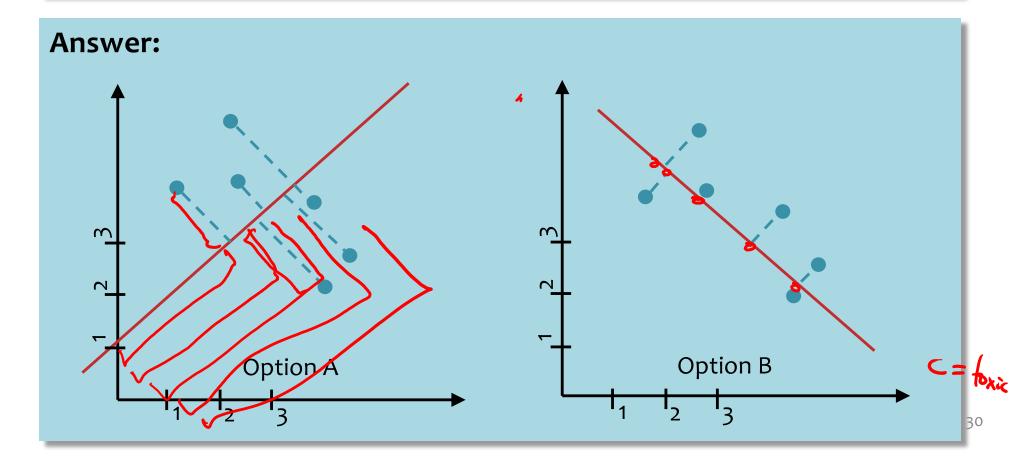
Projection Example

Question:

Below are two plots of the same dataset D. Consider the two projections shown.

Which maximizes the variance? 5%/50%

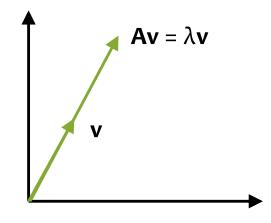
Q 2. Which minimizes the reconstruction error? 10% / 90% 13



Background: Eigenvectors & Eigenvalues

For a square matrix **A** (n x n matrix), the vector **v** (n x 1 matrix) is an **eigenvector** iff there exists **eigenvalue** λ (scalar) such that:

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$



The linear transformation **A** is only stretching vector **v**.

That is, $\lambda \mathbf{v}$ is a scalar multiple of \mathbf{v} .

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

PCA

Claim: Minimizing the reconstruction error is equivalent to maximizing the variance.

Proof: First, note that:

$$||\mathbf{x}^{(i)} - (\mathbf{v}^T \mathbf{x}^{(i)}) \mathbf{v}||^2 = ||\mathbf{x}^{(i)}||^2 - (\mathbf{v}^T \mathbf{x}^{(i)})^2$$
 (1)

since ${\bf v}^T {\bf v} = ||{\bf v}||^2 = 1$.

Substituting into the minimization problem, and removing the extraneous terms, we obtain the maximization problem.

$$\mathbf{v}^* = \underset{\mathbf{v}:||\mathbf{v}||^2=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^N ||\mathbf{x}^{(i)} - (\mathbf{v}^T \mathbf{x}^{(i)}) \mathbf{v}||^2$$

$$= \underset{\mathbf{v}:||\mathbf{v}||^2=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^N ||\mathbf{x}^{(i)}||^2 - (\mathbf{v}^T \mathbf{x}^{(i)})^2$$
(3)

$$= \underset{\mathbf{v}:||\mathbf{v}||^2=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{x}^{(i)}||^2 - (\mathbf{v}^T \mathbf{x}^{(i)})^2$$
 (3)

$$= \underset{\mathbf{v}:||\mathbf{v}||^2=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N} (\mathbf{v}^T \mathbf{x}^{(i)})^2$$
(4)

The First Principal Component

PCA

Claim: The vector that maximizes the variances is the eigenvector of Σ with largest eigenvalue.

Proof Sketch: To find the first principal component, we wish to solve the following constrained optimization problem (variance minimization).

$$\mathbf{v}_1 = \underset{\mathbf{v}:||\mathbf{v}||^2=1}{\operatorname{argmax}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$$
 (1)

So we turn to the method of Lagrange multipliers. The Lagrangian is:

$$\mathcal{L}(\mathbf{v}, \lambda) = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v} - \lambda (\mathbf{v}^T \mathbf{v} - 1)$$
 (2)

Taking the derivative of the Lagrangian and setting to zero gives:

$$\frac{d}{d\mathbf{v}} \left(\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} - \lambda (\mathbf{v}^T \mathbf{v} - 1) \right) = 0$$
 (3)

$$\mathbf{\Sigma}\mathbf{v} - \lambda\mathbf{v} = 0 \tag{4}$$

$$\mathbf{\Sigma}\mathbf{v} = \lambda\mathbf{v} \tag{5}$$

Recall: For a square matrix $\bf A$, the vector $\bf v$ is an **eigenvector** iff there exists **eigenvalue** λ such that:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \tag{6}$$

Rewriting the objective of the maximization shows that not only will the optimal vector \mathbf{v}_1 be an eigenvector, it will be one with maximal eigenvalue.

$$\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} = \mathbf{v}^T \lambda \mathbf{v} \tag{7}$$

$$= \lambda \mathbf{v}^T \mathbf{v} \tag{8}$$

$$= \lambda ||\mathbf{v}||^2 \tag{9}$$

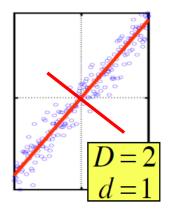
$$=\lambda$$
 (10)

Principal Component Analysis (PCA)

 $(X X^T)v = \lambda v$, so v (the first PC) is the eigenvector of sample correlation/covariance matrix $X X^T$

Sample variance of projection $\mathbf{v}^T X X^T \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda$

Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of energy along that dimension).



Eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots$

- The 1st PC v_1 is the the eigenvector of the sample covariance matrix X X^T associated with the largest eigenvalue
- The 2nd PC v_2 is the the eigenvector of the sample covariance matrix $X\,X^T$ associated with the second largest eigenvalue
- And so on ...

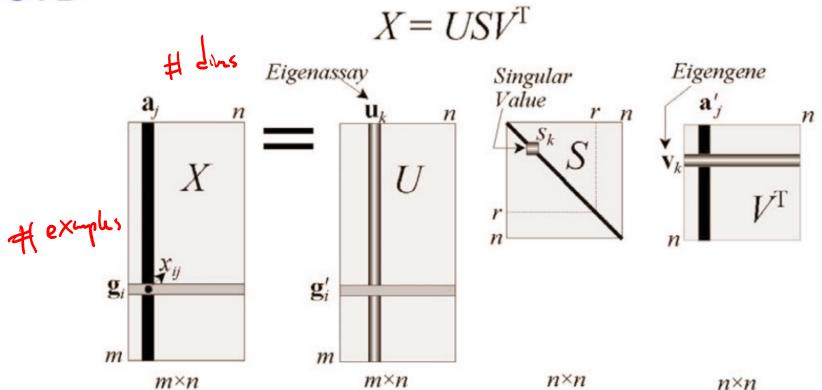
ALGORITHMS FOR PCA

Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

- Power iteration (aka. Von Mises iteration)
 - finds each principal component one at a time in order
- Singular Value Decomposition (SVD)
 - finds all the principal components at once
 - two options:
 - Option A: run SVD on X^TX
 - Option B: run SVD on X
 (not obvious why Option B should work...)
- Stochastic Methods (approximate)
 - very efficient for high dimensional datasets with lots of points

SVD



Data X, one row per data point

US gives coordinates of rows of X in the space of principle components

S is diagonal, $S_k > S_{k+1}$, S_k^2 is kth largest eigenvalue

Rows of V^T are unit length eigenvectors of X^TX

If cols of X have zero mean, then $X^TX = c \Sigma$ and eigenvects are the Principle Components

Singular Value Decomposition

To generate principle components:

- Subtract mean $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$ from each data point, to create zero-centered data
- Create matrix X with one row vector per (zero centered) data point
- Solve SVD: $X = USV^T$
- Output Principle components: columns of V (= rows of VT)
 - Eigenvectors in V are sorted from largest to smallest eigenvalues
 - S is diagonal, with s_k^2 giving eigenvalue for kth eigenvector

Singular Value Decomposition

To project a point (column vector x) into PC coordinates: $V^T x$

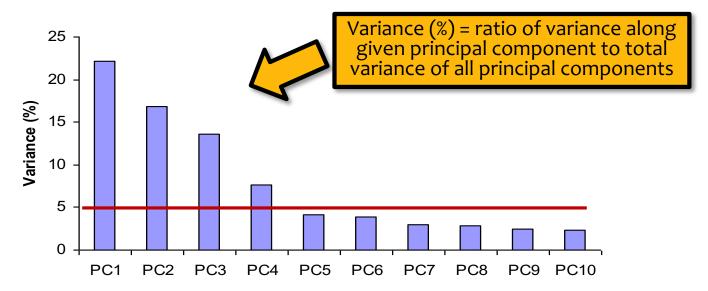
If x_i is ith row of data matrix X, then

- (ith row of US) = $V^T x_i^T$
- $(US)^T = V^T X^T$

To project a column vector x to M dim Principle Components subspace, take just the first M coordinates of $V^T x$

How Many PCs?

- For M original dimensions, sample covariance matrix is MxM, and has up to M eigenvectors. So M principal components (PCs).
- Where does dimensionality reduction come from?
 Can ignore the components of lesser significance.



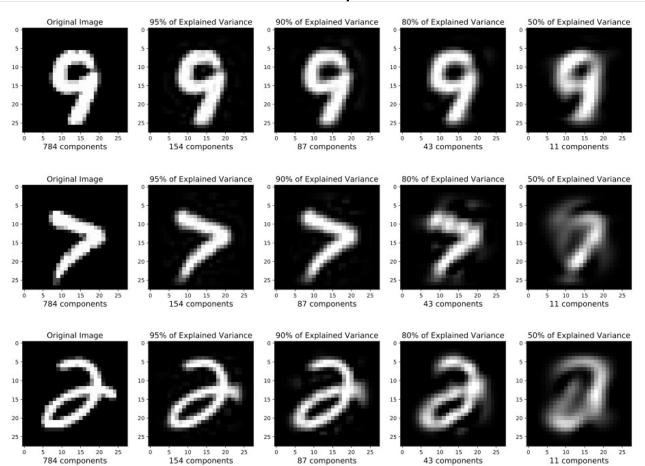
- You do lose some information, but if the eigenvalues are small, you don't lose much
 - M dimensions in original data
 - calculate M eigenvectors and eigenvalues
 - choose only the first D eigenvectors, based on their eigenvalues
 - final data set has only D dimensions

PCA EXAMPLES

Projecting MNIST digits

Task Setting:

- 1. Take each 28x28 image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784) and project it down to K components (i.e. a vector $\mathbf{u}^{(i)}$)
- 2. Report percent of variance explained for K components
- 3. Then project back up to 28x28 image (i.e. a vector $\tilde{\mathbf{x}}^{(i)}$ of length 784) to visualize how much information was preserved



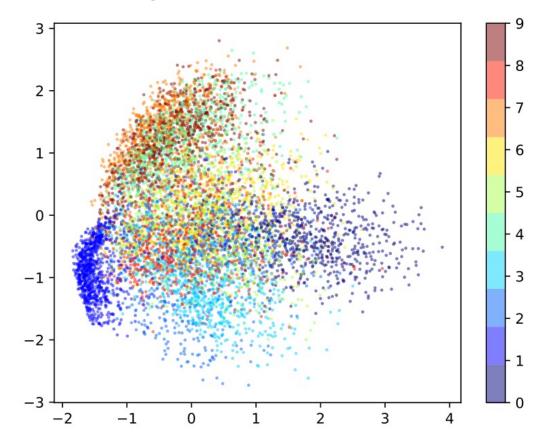
Takeaway: Using fewer principal components K leads to higher reconstruction error.

But even a small number (say 43) still preserves a lot of information about the original image.

Projecting MNIST digits

Task Setting:

- 1. Take each 28x28 image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784) and project it down to K=2 components (i.e. a vector $\mathbf{u}^{(i)}$) \leftarrow $\in \mathbb{R}^2$
- 2. Plot the 2 dimensional points $\mathbf{u}^{(i)}$ and label with the (unknown to PCA) label $\mathbf{y}^{(i)}$ as the color
- 3. Here we look at all ten digits 0 9

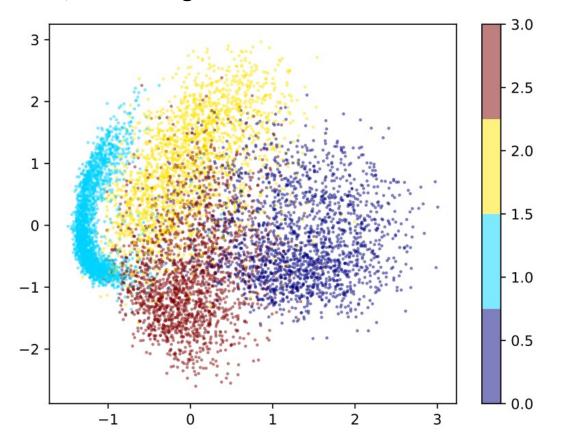


Takeaway: Even with a tiny number of principal components K=2, PCA learns a representation that captures the latent information about the type of digit

Projecting MNIST digits

Task Setting:

- 1. Take each 28x28 image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784) and project it down to K=2 components (i.e. a vector $\mathbf{u}^{(i)}$)
- 2. Plot the 2 dimensional points $\mathbf{u}^{(i)}$ and label with the (unknown to PCA) label $\mathbf{y}^{(i)}$ as the color
- 3. Here we look at just four digits 0, 1, 2, 3



Takeaway: Even with a tiny number of principal components K=2, PCA learns a representation that captures the latent information about the type of digit

Learning Objectives

Dimensionality Reduction / PCA

You should be able to...

- Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
- Identify examples of high dimensional data and common use cases for dimensionality reduction
- 3. Draw the principal components of a given toy dataset
- 4. Establish the equivalence of minimization of reconstruction error with maximization of variance
- 5. Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
- 6. Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
- Use common methods in linear algebra to obtain the principal components