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Front Matter

11/21/22

� Announcements

� HW7 released 11/11, due 11/21 (today!) at 11:59 PM 

� HW8 released 11/21 (today!), due 12/2 at 11:59 PM 

� Please be mindful of your grace day usage
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾
� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� 𝑉 𝑠 ← max
' ∈𝒜

𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
' ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� Return 𝜋∗

Recall: Value 
Iteration
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𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉∗ 𝑠&

𝑉∗ 𝑠& = max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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𝑄∗(𝑠, 𝑎)w/ 
deterministic 
rewards and 
transitions

11/21/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&
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Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&
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Learning
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𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎
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𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0
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3 0 0 0 0

4 0 0 0 0
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𝑄 4, 𝑎& = 0Learning
𝑄∗(𝑠, 𝑎): 
Example
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𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
'!∈ →,←,↑,↻

𝑄 5, 𝑎& = 3Learning
𝑄∗(𝑠, 𝑎): 
Example
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𝑄(𝑠, 𝑎) → ← ↑ ↻
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𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example
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Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&
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� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

Current 
value

Update w/ 
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 
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� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

� For Algorithms 1 & 2 (deterministic transitions), 
𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

� For Algorithm 3 (temporal difference learning),  

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often 

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼= follows some “schedule” s.t.
∑=>"? 𝛼= = ∞ and ∑=>"? 𝛼=@ < ∞ e.g., 𝛼= = ⁄A =BA
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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Playing Go
AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
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Poll Question 2:
AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

Which is the best 
approximation to the number 
of legal board states in Go?
A. The number of stars in the 

universe ∼ 10@C

B. The number of atoms in 
the universe ∼ 10D"

C. A googol = 10A""

D. The number of possible 
games of chess ∼ 10A@"

E. A googolplex = 10EFFEFG

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
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Playing Go
AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� There are ~10170  

legal Go board 
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

• Throw a neural network at it! 
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Deep 
Q-learning

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate 
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔=, 𝑎=, 𝑟=, 𝒔=BA gathered online by 

the agent/learning algorithm 
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� Represent states using some feature vector 𝒔= ∈ ℝH
e.g. for Go, 𝒔= = 1, 0, −1,… , 1 I

� Define a neural network architecture

Deep 
Q-learning:
Model

33

𝒔=

𝑎=
Θ 𝑄 𝒔=, 𝑎=; Θ

𝒔= Θ

𝑄 𝒔=, 𝑎A; Θ
𝑄 𝒔=, 𝑎@; Θ

𝑄 𝒔=, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:
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� “True” loss

ℓ Θ = 5
# ∈ 𝒮

5
' ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
@

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ J the temporal 

difference target is 
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

'!
𝑄 𝑠&, 𝑎&; Θ = ≔ 𝑦

� Set the parameters in the next iteration Θ JBA such 
that 𝑄 𝑠, 𝑎; Θ JBA ≈ 𝑦

ℓ Θ J , Θ =BA = 𝑦 − 𝑄 𝑠, 𝑎; Θ JBA
@

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function

34

2. Don’t know 𝑄∗
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Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)

35

� Inputs: discount factor 𝛾, an initial state 𝑠",

learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔=, 𝒂=, 𝑟=, 𝒔=BA
� Update Θ = by taking a step opposite the gradient

Θ =BA ← Θ = − 𝛼∇K "#$ ℓ Θ = , Θ =BA

where
∇K "#$ ℓ Θ = , Θ =BA

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ =BA ∇K "#$ 𝑄 𝑠, 𝑎; Θ =BA
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Deep 
Q-learning:
Experience
Replay

36

� Issue: SGD assumes i.i.d. training samples but in RL, 
samples are highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂=, 𝑟=, 𝒔=BA (Lin, 1992)

� Also keeps the agent from “forgetting” about recent 
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and 

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some 
distribution that prioritizes experiences with high error 
(Schaul et al., 2016)
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Q-learning and 
Deep RL 
Learning 
Objectives

You should be able to…

� Apply Q-Learning to a real-world environment
� Implement Q-learning 

� Identify the conditions under which the Q-learning 
algorithm will converge to the true value function 

� Adapt Q-learning to Deep Q-learning by employing a neural 
network approximation to the Q function 

� Describe the connection between Deep Q-Learning and 
regression
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