
10-301/601: Introduction
to Machine Learning
Lecture 23: Q-learning
and Deep RL
Henry Chai & Matt Gormley

11/21/22

Front Matter

11/21/22

� Announcements

� HW7 released 11/11, due 11/21 (today!) at 11:59 PM

� HW8 released 11/21 (today!), due 12/2 at 11:59 PM

� Please be mindful of your grace day usage

2

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22 3

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22 4

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’ | 𝑠, 𝑎), 𝛾
� Initialize 𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� 𝑉 𝑠 ← max
' ∈𝒜

𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

𝜋∗ 𝑠 ← argmax
' ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� Return 𝜋∗

Recall: Value
Iteration

11/21/22 5

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉∗ 𝑠&

𝑉∗ 𝑠& = max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

11/21/22 6

𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

11/21/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

7

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22 8

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22 9

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22 10

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/21/22 11

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/21/22

A.

C.

D.

B. (TOXIC)

12

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown in green

11/21/22

Poll Question 1:

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

13

14

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

11/21/22

15

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

Learning
𝑄∗(𝑠, 𝑎):
Example

𝛾 = 0.9

11/21/22

1

6

5

62 3 40
𝛾 = 0.9

1

16

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 0Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

17

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

18

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
'!∈ →,←,↑,↻

𝑄 5, 𝑎& = 3Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

19

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

20

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎):
Example

11/21/22

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& = 𝛿 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22 21

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

Current
value

Update w/
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

11/21/22 22

� Inputs: discount factor 𝛾, an initial state 𝑠,
greediness parameter 𝜖 ∈ 0, 1 ,
learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠& where 𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Current
value

Temporal difference
target

Temporal
difference

11/21/22 23

Learning
𝑄∗(𝑠, 𝑎):
Convergence

� For Algorithms 1 & 2 (deterministic transitions),
𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

11/21/22 24

Learning
𝑄∗(𝑠, 𝑎):
Convergence

� For Algorithm 3 (temporal difference learning),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼= follows some “schedule” s.t.
∑=>"? 𝛼= = ∞ and ∑=>"? 𝛼=@ < ∞ e.g., 𝛼= = ⁄A =BA

11/21/22 25

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22 26

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22 27

Playing Go
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19 board
� Players alternate

placing black and
white stones

� The goal is claim
more territory
than the opponent

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
28

Poll Question 2:
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

Which is the best
approximation to the number
of legal board states in Go?
A. The number of stars in the

universe ∼ 10@C

B. The number of atoms in
the universe ∼ 10D"

C. A googol = 10A""

D. The number of possible
games of chess ∼ 10A@"

E. A googolplex = 10EFFEFG

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
29

Playing Go
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19 board
� Players alternate

placing black and
white stones

� The goal is claim
more territory
than the opponent

� There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
30

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

• Throw a neural network at it!

11/21/22 31

Deep
Q-learning

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔=, 𝑎=, 𝑟=, 𝒔=BA gathered online by

the agent/learning algorithm

11/21/22 32

� Represent states using some feature vector 𝒔= ∈ ℝH
e.g. for Go, 𝒔= = 1, 0, −1,… , 1 I

� Define a neural network architecture

Deep
Q-learning:
Model

33

𝒔=

𝑎=
Θ 𝑄 𝒔=, 𝑎=; Θ

𝒔= Θ

𝑄 𝒔=, 𝑎A; Θ
𝑄 𝒔=, 𝑎@; Θ

𝑄 𝒔=, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

11/21/22

� “True” loss

ℓ Θ = 5
∈ 𝒮

5
' ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
@

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ J the temporal

difference target is
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

'!
𝑄 𝑠&, 𝑎&; Θ = ≔ 𝑦

� Set the parameters in the next iteration Θ JBA such
that 𝑄 𝑠, 𝑎; Θ JBA ≈ 𝑦

ℓ Θ J , Θ =BA = 𝑦 − 𝑄 𝑠, 𝑎; Θ JBA
@

1. 𝒮 too big to compute this sum

Deep
Q-learning:
Loss Function

34

2. Don’t know 𝑄∗

11/21/22

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

35

� Inputs: discount factor 𝛾, an initial state 𝑠",

learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2, …
� Gather training sample 𝒔=, 𝒂=, 𝑟=, 𝒔=BA
� Update Θ = by taking a step opposite the gradient

Θ =BA ← Θ = − 𝛼∇K "#$ ℓ Θ = , Θ =BA

where
∇K "#$ ℓ Θ = , Θ =BA

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ =BA ∇K "#$ 𝑄 𝑠, 𝑎; Θ =BA

11/21/22

Deep
Q-learning:
Experience
Replay

36

� Issue: SGD assumes i.i.d. training samples but in RL,
samples are highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of the 𝑁
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂=, 𝑟=, 𝒔=BA (Lin, 1992)

� Also keeps the agent from “forgetting” about recent
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some
distribution that prioritizes experiences with high error
(Schaul et al., 2016)

11/21/22

Q-learning and
Deep RL
Learning
Objectives

You should be able to…

� Apply Q-Learning to a real-world environment
� Implement Q-learning

� Identify the conditions under which the Q-learning
algorithm will converge to the true value function

� Adapt Q-learning to Deep Q-learning by employing a neural
network approximation to the Q function

� Describe the connection between Deep Q-Learning and
regression

11/21/22 37

