10-301/601: Introduction to Machine Learning
Lecture 23: Q-learning and Deep RL

Henry Chai & Matt Gormley
11/21/22
• Announcements
 • HW7 released 11/11, due 11/21 (today!) at 11:59 PM
 • HW8 released 11/21 (today!), due 12/2 at 11:59 PM
 • Please be mindful of your grace day usage
Two big Q’s

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?
Two big Q’s

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?
Recall: Value Iteration

- Inputs: \(R(s, a), p(s' \mid s, a), \gamma \)
- Initialize \(V^{(0)}(s) = 0 \ \forall \ s \in S \) (or randomly) and set \(t = 0 \)
- While not converged, do:
 - For \(s \in S \)
 - For \(a \in \mathcal{A} \)
 - For \(s' \in S \)
 - \(Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s') \)
 - \(V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a) \)
 - For \(s \in S \)
 - \(\pi^*(s) \leftarrow \arg\max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s') \)
 - Return \(\pi^* \)
\(Q^*(s, a) \) w/ deterministic rewards

\(Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}] \)

\[
Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^*(s')
\]

\[
V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s', a')
\]

\[
Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) \left[\max_{a' \in \mathcal{A}} Q^*(s', a') \right]
\]

\[
\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s, a)
\]

• Insight: if we know \(Q^* \), we can compute an optimal policy \(\pi^* \)!
$Q^*(s,a)$ w/ deterministic rewards and transitions

$Q^*(s,a) = \mathbb{E}[$total discounted reward of taking action a in state s, assuming all future actions are optimal$]$

$$= R(s,a) + \gamma V^*(\delta(s,a))$$

$V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a), a')$

$Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a), a')$

$\pi^*(s) = \arg\max_{a \in \mathcal{A}} Q^*(s,a)$

• Insight: if we know Q^*, we can compute an optimal policy π^*!
Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form)

- Inputs: discount factor γ, an initial state s

- Initialize $Q(s, a) = 0 \ \forall \ s \in S, a \in A$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
 - Take a random action a
 - Receive reward $r = R(s, a)$
 - Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
 - Update $Q(s, a)$:
 $$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ-greedy online learning (table form)

- Inputs: discount factor γ, an initial state s, greediness parameter $\epsilon \in [0, 1]$
- Initialize $Q(s, a) = 0 \forall s \in S, a \in A$ (Q is a $|S| \times |A|$ array)
- While TRUE, do
 - With probability ϵ, take the greedy action
 $$a = \arg\max_{a'} Q(s, a')$$
 - Otherwise, with probability $1 - \epsilon$, take a random action a
 - Receive reward $r = R(s, a)$
 - Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
 - Update $Q(s, a)$:
 $$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
Learning $Q^*(s, a)$: Example

$R(s, a)$ represented by $\gamma = 0.9$
Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?
Poll Question 1:

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

\[\gamma = 0.9 \]

A.

B. (TOXIC)

C.

D.
Poll Question 1:

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

$Q^*(s, a) = R(s, a) + \gamma V^*(\delta(s, a))$

$V^*(s)$ shown in green
Learning $Q^*(s, a)$: Example

$R(s, a)$ represented by $\gamma = 0.9$
Learning $Q^*(s, a)$: Example

$\gamma = 0.9$

<table>
<thead>
<tr>
<th>$Q(s,a)$</th>
<th>\rightarrow</th>
<th>\leftarrow</th>
<th>\uparrow</th>
<th>Υ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning $Q^* (s, a)$: Example

$\gamma = 0.9$

$Q(3, \rightarrow) \leftarrow 0 + (0.9) \max_{a' \in \{\rightarrow, \leftarrow, \uparrow, \downarrow \}} Q(4, a') = 0$

<table>
<thead>
<tr>
<th>$Q(s, a)$</th>
<th>\rightarrow</th>
<th>\leftarrow</th>
<th>\uparrow</th>
<th>\downarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning $Q^*(s, a)$: Example

$\gamma = 0.9$

<table>
<thead>
<tr>
<th>$Q(s, a)$</th>
<th>→</th>
<th>←</th>
<th>↑</th>
<th>⬇</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning $Q^*(s, a)$: Example

$\gamma = 0.9$

$Q(4, \uparrow) \leftarrow 3 + (0.9 \max_{a' \in \{\to, \leftarrow, \uparrow, \downarrow\}} Q(5, a')) = 3$

<table>
<thead>
<tr>
<th>$Q(s, a)$</th>
<th>\to</th>
<th>\leftarrow</th>
<th>\uparrow</th>
<th>\downarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning $Q^*(s,a)$: Example

\[
\gamma = 0.9
\]

\[
Q(3, \rightarrow) \leftarrow 0 + (0.9) \max_{a' \in \{\rightarrow, \leftarrow, \uparrow, \downarrow\}} Q(4, a') = 2.7
\]

\[
\begin{array}{c|cccc}
Q(s,a) & \rightarrow & \leftarrow & \uparrow & \downarrow \\
\hline
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 3 & 0 \\
5 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 \\
\end{array}
\]
$\gamma = 0.9$

$Q(3, \rightarrow) \leftarrow 0 + (0.9) \max_{a' \in \{\rightarrow, \leftarrow, \uparrow, \downarrow\}} Q(4, a') = 2.7$

Learning $Q^*(s, a)$: Example

<table>
<thead>
<tr>
<th>$Q(s, a)$</th>
<th>\rightarrow</th>
<th>\leftarrow</th>
<th>\uparrow</th>
<th>\downarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ε-greedy online learning (table form)

- Inputs: discount factor γ, an initial state s, greediness parameter $\epsilon \in [0, 1]$

- Initialize $Q(s, a) = 0 \forall s \in S, a \in A$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
 - With probability ϵ, take the greedy action $a = \arg\max_{a'} Q(s, a')$
 Otherwise, with probability $1 - \epsilon$, take a random action a
 - Receive reward $r = R(s, a)$
 - Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$
 - Update $Q(s, a)$:

$$Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$$
Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ-greedy online learning (table form)

- **Inputs:** discount factor γ, an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")
- Initialize $Q(s, a) = 0 \ \forall \ s \in S, a \in A$ (Q is a $|S| \times |A|$ array)
- While TRUE, do
 - With probability ϵ, take the greedy action

 $$a = \operatorname{argmax}_{a' \in A} Q(s, a')$$
 - Otherwise, with probability $1 - \epsilon$, take a random action a
 - Receive reward $r = R(s, a)$
 - Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$
 - Update $Q(s, a)$:
 $$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') \right)$$

Current value

Update w/ deterministic transitions
Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ-greedy online learning (table form)

- **Inputs**: discount factor γ, an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ (“trust parameter”)
- **Initialize** $Q(s, a) = 0 \ \forall \ s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |\mathcal{A}|$ array)
- **While** TRUE, do
 - With probability ϵ, take the greedy action
 $$a = \arg\max_{a' \in \mathcal{A}} Q(s, a')$$
 Otherwise, with probability $1 - \epsilon$, take a random action a
 - Receive reward $r = R(s, a)$
 - Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$
 - Update $Q(s, a)$:
 $$Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$$
 - Current value
 - Temporal difference target

Learning $Q^*(s, a)$ w/ deterministic rewards
Learning $Q^*(s, a)$: Convergence

- For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 2. $0 \leq \gamma < 1$
 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \; \forall \; s \in S, a \in A$
 4. Initial Q values are finite
Learning $Q^*(s, a)$: Convergence

- For Algorithm 3 (temporal difference learning), Q converges to Q^* if
 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
 2. $0 \leq \gamma < 1$
 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s\in S, a\in A$
 4. Initial Q values are finite
 5. Learning rate α_t follows some “schedule” s.t.
 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$
Two big Q’s

1. What can we do if the reward and/or transition functions/distributions are unknown?
 • Use online learning to gather data and learn $Q^*(s, a)$

2. How can we handle infinite (or just very large) state/action spaces?
Two big Q’s

1. What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$

2. How can we handle infinite (or just very large) state/action spaces?
AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
Poll Question 2:

Which is the best approximation to the number of legal board states in Go?

A. The number of stars in the universe $\sim 10^{24}$
B. The number of atoms in the universe $\sim 10^{80}$
C. A googol $= 10^{100}$
D. The number of possible games of chess $\sim 10^{120}$
E. A googolplex $= 10^{googol}$

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are $\sim 10^{170}$ legal Go board states!

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

Source: https://en.wikipedia.org/wiki/Go_and_mathematics
Two big Q’s

1. What can we do if the reward and/or transition functions/distributions are unknown?
 • Use online learning to gather data and learn $Q^*(s, a)$

2. How can we handle infinite (or just very large) state/action spaces?
 • Throw a neural network at it!
Deep Q-learning

- Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$
 - Learn the parameters using SGD
 - Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm
• Represent states using some feature vector $s_t \in \mathbb{R}^M$
eq \text{e.g. for Go, } s_t = [1, 0, -1, \ldots, 1]^T$

• Define a neural network architecture

Deep Q-learning: Model

Model 1:

s_t → $Q(s_t, a_t; \Theta)$

Model 2:

s_t → $Q(s_t, a_1; \Theta)$
s_t → $Q(s_t, a_2; \Theta)$

⋮

s_t → $Q(s_t, a_{|A|}; \Theta)$
Deep Q-learning: Loss Function

1. Use stochastic gradient descent: just consider one state-action pair in each iteration

2. Use temporal difference learning:
 - Given current parameters $\Theta^{(t)}$ the temporal difference target is
 \[
 Q^*(s, a) \approx r + \gamma \max_{a'} Q(s', a'; \Theta^{(t)}) := y
 \]
 - Set the parameters in the next iteration $\Theta^{(t+1)}$ such that
 \[
 Q(s, a; \Theta^{(t+1)}) \approx y
 \]

"True" loss

\[
\ell(\Theta) = \sum_{s \in S} \sum_{a \in A} (Q^*(s, a) - Q(s, a; \Theta))^2
\]

1. S too big to compute this sum

2. Don’t know Q^*
Deep Q-learning

Algorithm 4: Online learning (parametric form)

- Inputs: discount factor γ, an initial state s_0, learning rate α
- Initialize parameters $\Theta^{(0)}$
- For $t = 0, 1, 2, \ldots$
 - Gather training sample (s_t, a_t, r_t, s_{t+1})
 - Update $\Theta^{(t)}$ by taking a step opposite the gradient
 $$\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta^{(t+1)}} \ell (\Theta^{(t)}, \Theta^{(t+1)})$$

where
$$\nabla_{\Theta^{(t+1)}} \ell (\Theta^{(t)}, \Theta^{(t+1)}) = 2 \left(y - Q(s, a; \Theta^{(t+1)}) \right) \nabla_{\Theta^{(t+1)}} Q(s, a; \Theta^{(t+1)})$$
Deep Q-learning: Experience Replay

- Issue: SGD assumes i.i.d. training samples but in RL, samples are *highly* correlated

- Idea: keep a “replay memory” $\mathcal{D} = \{e_1, e_2, \ldots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)
 - Also keeps the agent from “forgetting” about recent experiences

- Alternate between:
 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 2. Adding a new experience to \mathcal{D}

- Can also sample experiences from \mathcal{D} according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)
Q-learning and Deep RL Learning Objectives

You should be able to...

- Apply Q-Learning to a real-world environment
- Implement Q-learning
- Identify the conditions under which the Q-learning algorithm will converge to the true value function
- Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
- Describe the connection between Deep Q-Learning and regression