10-301/601: Introduction
to Machine Learning

Lecture 23: Q-learning
and Deep RL

Henry Chai & Matt Gormley
11/21/22



* Anhouncements

* HW7 released 11/11, due 11/21 (today!) at 11:59 PM

Front Matter

- HWS8 released 11/21 (today!), due 12/2 at 11:59 PM

* Please be mindful of your grace day usage

11/21/22




Two big Q’s

1. What can we do if the reward and/or transition

functions/distributions are unknown?

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22




Two big Q’s

1. What can we do if the reward and/or transition

functions/distributions are unknown?

2. How can we handle infinite (or just very large)

state/action spaces?

11/21/22




* Inputs: R(s,a), p(s’ | s,a),y
- Initialize V(©(s) = 0V s € S (or randomly) and set t = 0

- While not converged, do:
‘Fors €S

‘Fora € A
Recall: Value Q(s,a) =R(s,a) +y z p(s'|s,a)V(s")

: s'es
Iteration *V(s) « max Q(s,a)
aeA

‘Fors €S

n*(s) « argmax R(s,a) + y p(s'|s,a)V(s")

aeA s'esS

* Return t*

11/21/22



Q*(s,a) w/
deterministic
rewards

11/21/22

- Q*(s,a) = E[total discounted reward of taking action a in

state s, assuming all future actions are optimal]

= R(s,a) +y 2 p(s'|s,a)V*(s’)

S,ES\_J
V*(S’) _ C{,ng)jq Q*(S’, al)

Q"(s,a) = R(s,a) +v Z p(s’|s,a) [Jpé‘ffq Q*(s",a")|

s'eS

n*(s) = argmax Q*(s,a)
aeA

* Insight: if we know Q*, we can compute an optimal policy ™!



Q" (s,a) w/
deterministic
rewards and

transitions

11/21/22

* Q*(s,a) = E[total discounted reward of taking action a in

state s, assuming all future actions are optimal]

= R(s,a) + yV*(cS(s, a))

. V*(5(S, a)) = max Q*(6(s,a),a’)

Q*(s,a) =R(s,a) +y max Q"(6(s,a),a’)

n*(s) = argmax Q*(s,a)
aeA

* Insight: if we know Q*, we can compute an optimal policy ™!



Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

11/21/22

* Inputs: discount factor y, an initial state s

* Initialize Q(s,a) = 0Vs e S,aeA(Qisal|S|x|A| array)
* While TRUE, do

* Receive reward r = R(s, a)
* Update the state: s « s’ where s’ = §(s,a)
- Update Q(s, a):

Q(s,a) «r+vy max Q(s’,a")



Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 2:
e-greedy online
learning (table
form)

11/21/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1]

* Initialize Q(s,a) = 0Vs €S, a€e A (Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action

a = argmax Q(s,a’)
a' e A
Otherwise, with probability 1 — €, take a random action a

- Receive reward r = R(s, a) (unforan  orer
* Update the state: s « s’ where s’ = §(s,a) all dnoscfgc
* Update Q(s, a): qc{*cc»?)

Q(s,a) « r+ymaxQ(s’,a’)
a
/




R(s, a) represented by —

y = 0.9
1

0 0
@4 -

Learning

Q" (s, a):

Example

11/21/22



Which set of
blue arrows

(roughly)
corresponds to

Q" (s,a)?

11/21/22




Poll Question 1:

Which set of
blue arrows B. (TOXIC)

(roughly)

0
corresponds to B ICas

Q"(s,a)?

11/21/22




Poll Question 1:

Which set of

blue arrows V*(s) shown in green

(roughly) 5 1012 56713 63

corresponds to (M50 ] 567 63
5 5.10 5.67

Q°(s,a)?

Q* (s,a) =R(s,a) +yV*(8(s,a))
P

2 510

@'3— | 5.67

5.10 |

11/21/22




R(s, a) represented by —

y = 0.9
1

0 0
@4 -

Learning

Q" (s, a):

Example

11/21/22



Learning

Q" (s, a):

Example

11/21/22



Learning 0B3,~) < 0+(09) , max  Q(4,a) =

Q*(s,a): ----

Example

11/21/22



Learning

Q" (s, a):

Example

11/21/22



Learning Q4D <3+ (09) , max Q(5a) =

Q*(s,a): ----

Example

11/21/22



<D
: Q3,»)«<0+(09) max Q(4,a') =27
Learning a'€{-,-10)

0*(s,a): ca Ll L Lo

Example

0
0
0

7

11/21/22



: Q3,»)«<0+(09) max Q(4,a') =27
Learning a'€{-,-10)

0*(s,a): ca Ll L Lo

0
Example .
0
2.7
0
0
0

11/21/22



Learning
Q*(s,a) w/
deterministic
rewards and
transitions

Algorithm 2:
e-greedy online
learning (table
form)

11/21/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1]

* Initialize Q(s,a) = 0Vs €S, a€e A (Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action
a = argmax Q(s,a’)
a' e A
Otherwise, with probability 1 — €, take a random action a
* Receive reward r = R(s, a)
* Update the state: s « s’ where s’ = §(s,a)
* Update Q(s, a):

Q(s,a) « r+ymaxQ(s',a’)



Learning

Q*(s,a) w/
deterministic
rewards

Algorithm 3:
e-greedy online
learning (table
form)

11/21/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1],
learning rate a € [0, 1] (“trust parameter”)

* Initialize Q(s,a) =0V s €S,a € A(Qisal|S|x|A| array)
* While TRUE, do

- With probability €, take the greedy action
a = argmax Q(s,a’)
a' €A
Otherwise, with probability 1 — €, take a random action a
* Receive reward r = R(s, a)

- Update the state: s « s’ where s’ ~ p(s’ | s,a)
* Update QO (s, a):

Q(s,a) « (1 —a)Q(s,a) + « (r + yrrzla,lXQ(s’, a’))

—— %
Current Update w/

value deterministic transitions 22




Learning

Q*(s,a) w/
deterministic
rewards

Algorithm 3:
e-greedy online
learning (table
form)

11/21/22

* Inputs: discount factor y, an initial state s,

greediness parameter € € [0, 1],
learning rate a € [0, 1] (“trust parameter”)

ize Q(s,a) =0Vs€ES,a€A(QisalS|x|A| array)

- While TRUE, d¢

- With probability €, take the greedy action

a = argmax Q(s,a’)
a' €A
Otherwise, with probability 1 — €, take a random action a

* Receive reward r = R(s, a)

* Update the state: s « s’ where]}’~/p(s’ | s mporal

* Update Q(s, a): P difference
p g, NS

Q(s,a) « Q(s,a) + « (;" +ymax Q(s’, a’)B— Q(s, a))
\ ) N a J

Y
Current Temporal difference
value target




Learning

Q" (s, a):

Convergence

11/21/22

* For Algorithms 1 & 2 (deterministic transitions),

Q converges to Q* if

1. Every valid state-action pair is visited infinitely often

* Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!
2. 0<y<1
3. 3Bst. |R(s,a)|<BVseES,aeA

4. Initial Q values are finite



* For Algorithm 3 (temporal difference learning),
Q converges to Q™ if

1. Every valid state-action pair is visited infinitely often

* Q-learning is exploration-insensitive: any visitation

Learni ns strategy that satisfies this property will work!

Q" (s, a):

Convergence

. 0<y<1

. 3ABst |R(s,a)|<BVseES,aeA

. Initial Q values are finite

. Learning rate a; follows some “schedule” s.t.

Yizoar =ooand XiZoaf < we.g, ar =1/

11/21/22




Two big Q’s

What can we do if the reward and/or transition

functions/distributions are unknown?

* Use online learning to gather data and learn Q*(s, a)

How can we handle infinite (or just very large)

state/action spaces?

11/21/22




Two big Q’s

What can we do if the reward and/or transition

functions/distributions are unknown?

* Use online learning to gather data and learn Q*(s, a)

How can we handle infinite (or just very large)

state/action spaces?

11/21/22




AlphaGo (Black) vs. Lee Sedol (White) _
Game 2 final position (AlphaGo wins) Playing Go

* 19-by-19 board

* Players alternate
placing black and

white stones

* The goal is claim
9200  ° more territory

.‘. than the opponent

900 ®
® 900000
29 9 9 ()
200 99
9 ) ) oy
D@ >

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol

11/21/22




AlphaGo (Black) vs. Lee Sedol (White) _
Game 2 final position (AlphaGo wins) Poll Question 2:
Which is the best

approximation to the number
of legal board states in Go?

A. The number of stars in the
universe ~ 1044

B. The number of atoms in
9 the universe ~ 1089

C. Agoogol = 10190
D. The number of possible

29 9 ® _ 10120
) Yoo ) games of chess ~ 10
g P28 E. A googolplex = 108°08°!

D ®

TOXIC

Source: https://en.wikipedia.org/wiki/AlphaGo _versus Lee Sedol

11/21/22



AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

900 °
o
)
900 ®
o 900000
29 9 9 ()
200 99
9 ) ) oy
D@ >

Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol

Source: https://en.wikipedia.org/wiki/Go and mathematics

Playing Go

* 19-by-19 board

* Players alternate
placing black and
white stones

* The goal is claim
more territory
than the opponent

* There are ~10170
legal Go board
states!




Two big Q’s

What can we do if the reward and/or transition

functions/distributions are unknown?

* Use online learning to gather data and learn Q*(s, a)

How can we handle infinite (or just very large)

state/action spaces?

e Throw a neural network at it!

11/21/22




* Use a parametric function, Q(s, a; ©), to approximate

Deep Q*(s,a)

Q-lea rning * Learn the parameters using SGD

* Training data (¢, a;, 13, S¢4+1) gathered online by

the agent/learning algorithm

11/21/22




- Represent states using some feature vector s; € RM
e.g. for Go, sy = [1,0,—1, ..., 1]"

* Define a neural network architecture

Deep
Q-learning: — Q(st,ar; 0)
Model

— Q(st,a1;0)

7 Q(St) az; ®)
Model 2: s, — .

— Q(st,a141; 0) hsgum i
NG n?; Ve

\*\S‘%S’—

11/21/22 33




Deep

Q-learning:
Loss Function

11/21/22

* “True” loss 2. Don’t}l\<now Q"

6@ =) > (00— 0(s,0:0))°

SESaeA

1. S too big to compute this sum

Use stochastic gradient descent: just consider one
state-action pair in each iteration

Use temporal difference learning:

* Given current parameters OO the
temporal difference target is

Q*(s,a) ~T+ymaxQ(s a's @(t)) @

* Set the parameters in the next iteration @1 such that
Q(s, a; ®(t+1)) ~ y by minimizing the squared loss

f(@(t), @(t+1)) _ (y _ Q(s, a: ®(t+1)))2




* Inputs: discount factor y, an initial state s,

learning rate

Deep : - Initialize parameters (0
Q-learning Fort=0,1,2, ..

* Gather training sample (s¢, @, 15, Sp1) 33%
Algorlthm 4. - Update @) by taking a step opposite the gradient

Online learning 0D 01 — aVgyin£(0®, 01+D)

(parametric where bk

form) Vourn2(0®,004D) i
=2 (y -Q(s, @ ®(t+1))))V®(t+1)Q(S, a; (9(”1)9

-—
-

\J 14

11/21/22



* Issue: SGD assumes i.i.d. training samples but in RL,
samples are highly correlated

* Idea: keep a “replay memory” D = {eq, €, ... ,ey} of the N
most recent experiences e, = (s,, at, 1%, St+1) (Lin, 1992)
* Also keeps the agent from “forgetting” about recent
experiences

Deep
Q-learning:

 Alternate between:

Experience , ,
1. Sampling some e; uniformly at random from D and

Replay applying a Q-learning update (repeat T times)
2. Adding a new experience to D

* Can also sample experiences from D according to some
distribution that prioritizes experiences with high error

(Schaul et al., 2016)

11/21/22




Q-learning and
Deep RL

Learning
Objectives

11/21/22

You should be able to...

* Apply Q-Learning to a real-world environment

* Implement Q-learning

- Identify the conditions under which the Q-learning
algorithm will converge to the true value function

- Adapt Q-learning to Deep Q-learning by employing a neural
network approximation to the Q function

* Describe the connection between Deep Q-Learning and
regression




