
10-301/601:	Introduction	
to	Machine	Learning
Lecture	23:	Q-learning	
and	Deep	RL
Henry	Chai	&	Matt	Gormley

11/21/22

Front	Matter

11/21/22 2

� Announcements

� HW7	released	11/11,	due	11/21	(today!)	at	11:59	PM	

� HW8	released	11/21	(today!),	due	12/2	at	11:59	PM	

� Please	be	mindful	of	your	grace	day	usage

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

311/21/22

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

411/21/22

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎), 𝛾
� Initialize	𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮 (or	randomly)	and	set	𝑡 = 0
�While	not	converged,	do:

� For	𝑠 ∈ 𝒮
� For 𝑎 ∈ 𝒜

𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� 𝑉 𝑠 ← max
' ∈𝒜

𝑄 𝑠, 𝑎

� For	𝑠 ∈ 𝒮
𝜋∗ 𝑠 ← argmax

' ∈𝒜
𝑅 𝑠, 𝑎 + 𝛾 5

#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉 𝑠&

� Return 𝜋∗

Recall:	Value	
Iteration

511/21/22

𝑄∗(𝑠, 𝑎)w/	
deterministic	
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total	discounted	reward	of	taking	action	𝑎 in	
state	𝑠,	assuming	all	future	actions	are	optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 𝑉∗ 𝑠&

𝑉∗ 𝑠& = max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
#!∈ 𝒮

𝑝 𝑠& | 𝑠, 𝑎 max
'! ∈𝒜

𝑄∗ 𝑠&, 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight:	if	we	know	𝑄∗,	we	can	compute	an	optimal	policy	𝜋∗!

611/21/22

𝑄∗(𝑠, 𝑎)w/	
deterministic	
rewards	and	
transitions

711/21/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total	discounted	reward	of	taking	action	𝑎 in	
state	𝑠,	assuming	all	future	actions	are	optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
'! ∈𝒜

𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎&

𝜋∗ 𝑠 = argmax
' ∈𝒜

𝑄∗ 𝑠, 𝑎

� Insight:	if	we	know	𝑄∗,	we	can	compute	an	optimal	policy 𝜋∗!

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic	
rewards	and	
transitions

Algorithm	1:	
Online	learning	
(table	form)	

8

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is	a	 𝒮 × 𝒜 array)	

�While	TRUE,	do
� Take	a	random	action	𝑎

� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠& where	𝑠& = 𝛿 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic	
rewards	and	
transitions

Algorithm	2:	
𝜖-greedy	online	
learning	(table	
form)	

9

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
greediness	parameter	𝜖 ∈ 0, 1

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is	a	 𝒮 × 𝒜 array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠& where	𝑠& = 𝛿 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22

10

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented	by	
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

11

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which	set	of	
blue	arrows
(roughly)	
corresponds	to	
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/21/22

12

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Poll	Question	1:

Which	set	of	
blue	arrows
(roughly)	
corresponds	to	
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

11/21/22

A.

C.

D.

B.	(TOXIC)

13

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown	in	green

11/21/22

Poll	Question	1:

Which	set	of	
blue	arrows
(roughly)	
corresponds	to	
𝑄∗(𝑠, 𝑎)?

14

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 represented	by	
𝛾 = 0.9

11/21/22

15

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

Learning
𝑄∗(𝑠, 𝑎):	
Example

𝛾 = 0.9

11/21/22

1

6

5

62 3 40
𝛾 = 0.9

1

16

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 0Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

17

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

18

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
'!∈ →,←,↑,↻

𝑄 5, 𝑎& = 3Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

19

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

6

5

62 3 40
𝛾 = 0.9

1

20

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
'!∈ →,←,↑,↻

𝑄 4, 𝑎& = 2.7Learning
𝑄∗(𝑠, 𝑎):	
Example

11/21/22

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic	
rewards	and	
transitions

Algorithm	2:	
𝜖-greedy	online	
learning	(table	
form)	

21

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
greediness	parameter	𝜖 ∈ 0, 1

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is	a	 𝒮 × 𝒜 array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠& where	𝑠& = 𝛿 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

11/21/22

22

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
greediness	parameter	𝜖 ∈ 0, 1 ,
learning	rate	𝛼 ∈ 0, 1 (“trust	parameter”)

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is	a	 𝒮 × 𝒜 array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠& where	𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎&

Current	
value

Update	w/	
deterministic	transitions

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic	
rewards	

Algorithm	3:	
𝜖-greedy	online	
learning	(table	
form)	

11/21/22

23

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
greediness	parameter	𝜖 ∈ 0, 1 ,
learning	rate	𝛼 ∈ 0, 1 (“trust	parameter”)

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is	a	 𝒮 × 𝒜 array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
'! ∈𝒜

𝑄 𝑠, 𝑎&

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠& where	𝑠& ∼ 𝑝 𝑠& 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
'!

𝑄 𝑠&, 𝑎& − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)w/
deterministic	
rewards	

Algorithm	3:	
𝜖-greedy	online	
learning	(table	
form)	

Current	
value

Temporal	difference	
target

Temporal	
difference

11/21/22

Learning
𝑄∗(𝑠, 𝑎):	
Convergence

24

� For	Algorithms	1	&	2	(deterministic	transitions),	

𝑄 converges	to 𝑄∗ if
1. Every	valid	state-action	pair	is	visited	infinitely	often

� Q-learning	is	exploration-insensitive:	any	visitation	

strategy	that	satisfies	this	property	will	work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial	𝑄 values	are	finite

11/21/22

Learning
𝑄∗(𝑠, 𝑎):	
Convergence

25

� For	Algorithm	3	(temporal	difference	learning),		

𝑄 converges	to 𝑄∗ if
1. Every	valid	state-action	pair	is	visited	infinitely	often	

� Q-learning	is	exploration-insensitive:	any	visitation	

strategy	that	satisfies	this	property	will	work!

2. 0 ≤ 𝛾 < 1

3. ∃ 𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial	𝑄 values	are	finite

5. Learning	rate	𝛼= follows	some	“schedule”	s.t.
∑=>"? 𝛼= = ∞ and	∑=>"? 𝛼=@ < ∞ e.g.,	𝛼= = ⁄A =BA

11/21/22

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

2611/21/22

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

2711/21/22

Playing	Go

28

AlphaGo	(Black)	vs.	Lee	Sedol	(White)	
Game	2	final	position	(AlphaGo	wins)	

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19	board	

� Players	alternate	
placing	black	and	
white	stones

� The	goal	is	claim	
more	territory	
than	the	opponent

Poll	Question	2:

29

AlphaGo	(Black)	vs.	Lee	Sedol	(White)	
Game	2	final	position	(AlphaGo	wins)	

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

Which	is	the	best	
approximation	to	the	number	
of	legal	board	states	in	Go?
A. The	number	of	stars	in	the	

universe	∼ 10@C

B. The	number	of	atoms	in	
the	universe	∼ 10D"

C. A	googol	= 10A""

D. The	number	of	possible	
games of	chess	∼ 10A@"

E. A	googolplex	= 10EFFEFG

F. TOXIC

Playing	Go

30

AlphaGo	(Black)	vs.	Lee	Sedol	(White)	
Game	2	final	position	(AlphaGo	wins)	

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
11/21/22

� 19-by-19	board	

� Players	alternate	
placing	black	and	
white	stones

� The	goal	is	claim	
more	territory	
than	the	opponent

� There	are	~10170		
legal	Go	board	
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

• Throw	a	neural	network	at	it!	

3111/21/22

Deep	
Q-learning

� Use	a	parametric	function,	𝑄 𝑠, 𝑎; Θ ,	to	approximate	

𝑄∗ 𝑠, 𝑎
� Learn	the	parameters	using	SGD

� Training	data	 𝒔=, 𝑎=, 𝑟=, 𝒔=BA gathered	online	by	

the	agent/learning	algorithm	

3211/21/22

� Represent	states	using	some	feature	vector	𝒔= ∈ ℝH
e.g.	for	Go,	𝒔= = 1, 0, −1,… , 1 I

� Define	a	neural	network	architecture

Deep	
Q-learning:
Model

33

𝒔=

𝑎=
Θ 𝑄 𝒔=, 𝑎=; Θ

𝒔= Θ

𝑄 𝒔=, 𝑎A; Θ
𝑄 𝒔=, 𝑎@; Θ

𝑄 𝒔=, 𝑎 𝒜 ; Θ
⋮

Model	1:

Model	2:

11/21/22

� “True”	loss

ℓ Θ = 5
∈ 𝒮

5
' ∈𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ @

1. Use	stochastic	gradient	descent:	just	consider	one					
state-action	pair	in	each	iteration

2. Use	temporal	difference	learning:	
� Given	current	parameters	Θ J the
temporal	difference	target is	
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

'!
𝑄 𝑠&, 𝑎&; Θ = ≔ 𝑦

� Set	the	parameters	in	the	next	iteration	Θ JBA such	that	
𝑄 𝑠, 𝑎; Θ JBA ≈ 𝑦 by	minimizing	the	squared	loss

ℓ Θ J , Θ =BA = 𝑦 − 𝑄 𝑠, 𝑎; Θ JBA @

1.	𝒮 too	big	to	compute	this	sum

Deep	
Q-learning:
Loss	Function

34

2.	Don’t	know	𝑄∗

11/21/22

Deep	
Q-learning

Algorithm	4:	
Online	learning	
(parametric	
form)

35

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠",
learning	rate	𝛼

� Initialize	parameters	Θ "

� For	𝑡 = 0, 1, 2, …
� Gather	training	sample	 𝒔=, 𝒂=, 𝑟=, 𝒔=BA
� Update	Θ = by	taking	a	step	opposite	the	gradient

Θ =BA ← Θ = − 𝛼∇K "#$ ℓ Θ = , Θ =BA

where
∇K "#$ ℓ Θ = , Θ =BA

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ =BA ∇K "#$ 𝑄 𝑠, 𝑎; Θ =BA

11/21/22

Deep	
Q-learning:
Experience
Replay

36

� Issue:	SGD	assumes	i.i.d. training	samples	but	in	RL,	
samples	are	highly correlated

� Idea:	keep	a	“replay	memory” 𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁} of	the	𝑁
most	recent	experiences	𝑒𝑡 = 𝒔𝑡, 𝒂=, 𝑟=, 𝒔=BA (Lin,	1992)

� Also	keeps	the	agent	from	“forgetting”	about	recent	
experiences

� Alternate	between:
1. Sampling	some	𝑒𝑖 uniformly	at	random	from	𝒟 and	

applying	a	Q-learning	update	(repeat	𝛵 times)

2. Adding	a	new	experience	to	𝒟

� Can	also	sample	experiences	from	𝒟 according	to	some	
distribution	that	prioritizes	experiences	with	high	error	
(Schaul et	al.,	2016)

11/21/22

Q-learning	and	
Deep	RL	
Learning	
Objectives

You	should	be	able	to…

� Apply	Q-Learning	to	a	real-world	environment
� Implement	Q-learning	

� Identify	the	conditions	under	which	the	Q-learning	
algorithm	will	converge	to	the	true	value	function	

� Adapt	Q-learning	to	Deep	Q-learning	by	employing	a	neural	
network	approximation	to	the	Q	function	

� Describe	the	connection	between	Deep	Q-Learning	and	
regression

11/21/22 37

