10-301/601: Introduction to Machine Learning Lecture 21: Markov Decision Processes

Henry Chai & Matt Gormley 11/14/22

Front Matter

- Announcements
 - HW7 released 11/11, due 11/21 at 11:59 PM
 - Please be mindful of your grace day usage

Q & A: I've had such a great experience with this class, especially with your excellent TAs; how can I be more like them and contribute to future iterations of this class?

- You can apply to be a TA for this course next semester (S23)!
- Applications are due by Thursday, November 17th
- For more information
 and the application, see
 https://www.ml.cmu.edu
 /academics/ta.html

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - Regression $y^{(i)} \in \mathbb{R}$
 - Classification $y^{(i)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{x^{(i)}\}_{i=1}^{N}$
 - Clustering
 - Dimensionality reduction
- Reinforcement learning $\mathcal{D} = \left\{ \mathbf{s}^{(t)}, \mathbf{a}^{(t)}, r^{(t)} \right\}_{t=1}^T$

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

Outline

- Problem formulation
 - Time discounted cumulative reward
 - Markov decision processes (MDPs)
- Algorithms
 - Value & policy iteration (dynamic programming)
 - (Deep) Q-learning (temporal difference learning)

Reinforcement Learning: Problem Formulation

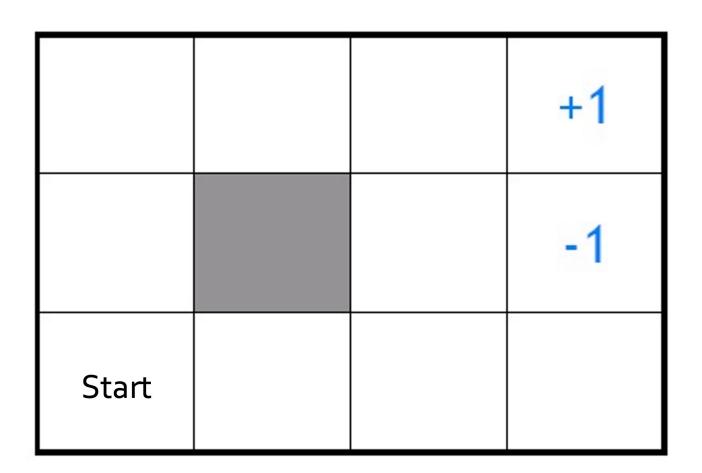
- State space, S
- Action space, ${\cal A}$
- Reward function
 - Stochastic, $p(r \mid s, a)$
 - Deterministic, $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Transition function
 - Stochastic, p(s' | s, a)
 - Deterministic, δ : $\mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$
- Reward and transition functions can be known or unknown

Reinforcement Learning: Problem Formulation

- Policy, $\pi:\mathcal{S}\to\mathcal{A}$
 - Specifies an action to take in every state
- Value function, V^{π} : $S \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π , i.e., in every state, taking the action that π returns

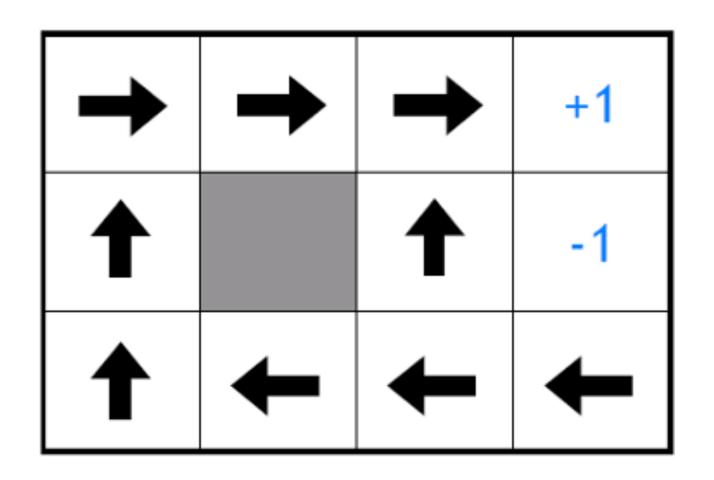
Toy Example

- S = all empty squares in the grid
- $\mathcal{A} = \{\text{up, down, left, right}\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward



Toy Example Policy

- S = all empty squares in the grid
- $\mathcal{A} = \{\text{up, down, left, right}\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward



Poll Question 1: Is this policy optimal?

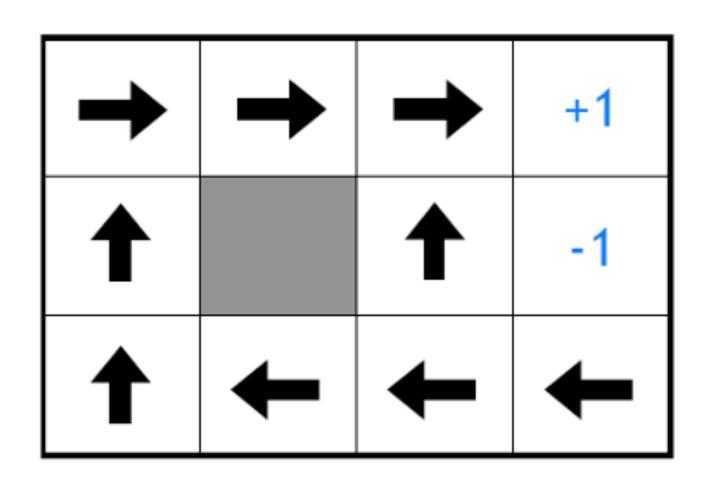
A. Yes

B. No

C. TOXIC

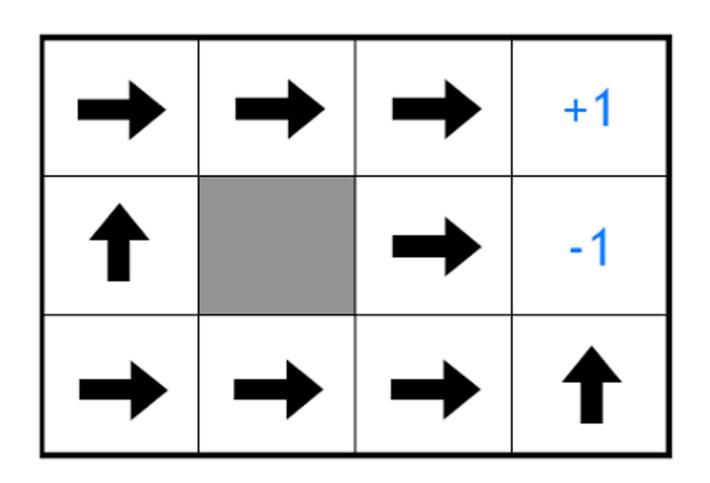
Poll Question 2:

Briefly justify your answer to the previous question



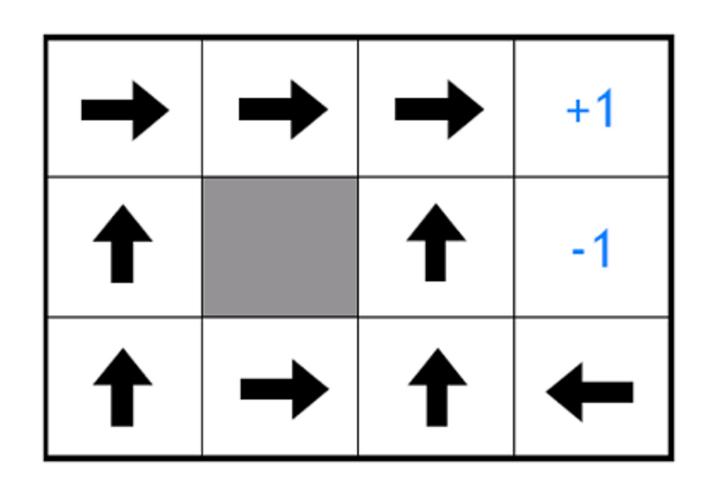
Toy Example

Optimal policy given a reward of -2 per step



Toy Example

Optimal policy given a reward of -0.1 per step



Markov Decision Process (MDP)

- Assume the following model for our data:
- 1. Start in some initial state s_0
- 2. For time step *t*:
 - a. Agent observes state s_t
 - b. Agent takes action $a_t = \pi(s_t)$
 - c. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - d. Agent transitions to state $s_{t+1} \sim p(s' \mid s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$

where $0 < \gamma < 1$ is some discount factor for future rewards

• MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: Key Challenges

- The algorithm has to gather its own training data
- The outcome of taking some action is often stochastic or unknown until after the fact
- Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi-armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $A = \{1, 2, 3\}$
- Deterministic transitions
- Rewards are stochastic

17

MDP Example: Multi-armed bandit

Bandit 1	Bandit 2	Bandit 3
1	???	???
1	???	???
1	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???
???	???	???

Reinforcement Learning: Objective Function

- Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall \ s \in \mathcal{S}$
- $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$ $s \text{ and executing policy } \pi \text{ forever}]$

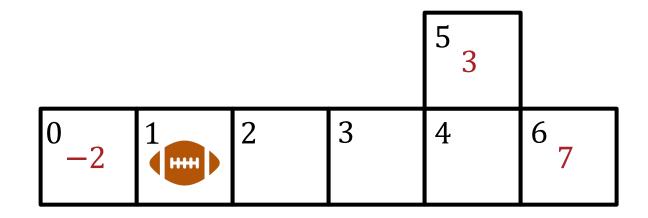
$$= \mathbb{E}_{p(s'|s,a)} [R(s_0 = s, \pi(s_0))$$

$$+ \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]$$

$$= \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{p(s'\mid s, a)} [R(s_t, \pi(s_t))]$$

where $0 < \gamma < 1$ is some discount factor for future rewards

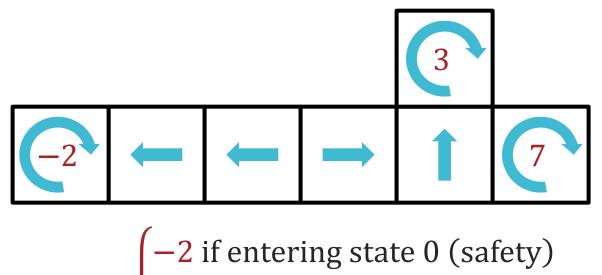
Value Function: Example



$$R(s,a) = \begin{cases} -2 & \text{if entering state 0 (safety)} \\ 3 & \text{if entering state 5 (field goal)} \\ 7 & \text{if entering state 6 (touch down)} \\ 0 & \text{otherwise} \end{cases}$$

$$\gamma = 0.9$$

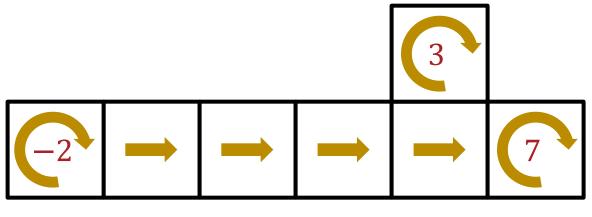
Value Function: Example

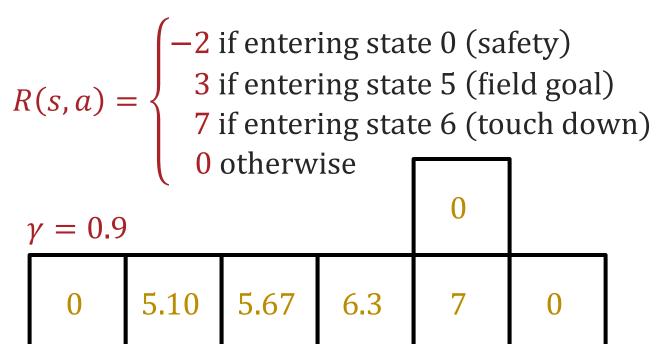


$R(s,a) = \begin{cases} -2 & \text{if entering state} \\ 3 & \text{if entering state} \\ 7 & \text{if entering state} \\ 0 & \text{otherwise} \end{cases}$					_		
,	$\gamma = 0.9$)			0		
	0	-2	-1.8	2.7	3	0	

11/14/22 **21**

Value Function: Example





How can we learn this optimal policy?

