10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

HMMs

$+$
 Bayesian Networks

Matt Gormley
Lecture 20
Nov. 10, 2022

Reminders

- Practice Problems: Exam 2
- Out: Fri, Nov. 4
- Exam 2
- Thu, Nov. 10, 6:30pm - 8:30pm
- Homework 7: Hidden Markov Models
- Out: Fri, Nov. 11
- Due: Mon, Nov. 21 at 11:59pm

EXAMPLE: FORWARD-BACKWARD ON THREE WORDS

Forward-Backward Algorithm

Forward-Backward Algorithm

Forward-Backward Algorithm

- Let's show the possible values for each variable

Forward-Backward Algorithm

- Let's show the possible values for each variable

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Forward-Backward Algorithm

- Let's show the possible values for each variable
- One possible assignment
- And what the 7 transition / emission factors think of it ...

Viterbi Algorithm: Most Probable Assignment

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product of 7 numbers
- Numbers associated with edges and nodes of path
- Most probable assignment = path with highest prodưct

Viterbi Algorithm: Most Probable Assignment

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z})$ * product weight of one path

Forward-Backward Algorithm: Finds Marginals

- So p(van) $=(1 / Z) *$ product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{a}\right)$
$=(1 / \mathrm{Z}) *$ total weight of all paths through a

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z}) *$ product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{n}\right)$
$=(1 / Z) *$ total weight of all paths through $/ \mathrm{n}$

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z}) *$ product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{v}\right)$
$=(1 / \mathrm{Z}) *$ total weight of all paths through $/ \mathrm{v}$

Forward-Backward Algorithm: Finds Marginals

- So $\mathrm{p}(\mathrm{v}$ a n$)=(1 / \mathrm{Z}) *$ product weight of one path
- Marginal probability $\mathrm{p}\left(Y_{2}=\mathrm{n}\right)$
$=(1 / \mathrm{Z}) *$ total weight of all paths through $/ \mathrm{n}$

Forward-Backward Algorithm: Finds Marginals

$\alpha_{2}(\mathrm{n})=$ total weight of these path prefixes
(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

Product gives $a x+a y+a z+b x+b y+b z+c x+c y+c z=$ total weight of paths

Forward-Backward Algorithm: Finds Marginals

"belief that $Y_{2}=\mathbf{n}$ "

A(pref., n)

Forward-Backward Algorithm: Finds Marginals

$=\alpha_{2}(\mathrm{v}) \quad \mathrm{A}($ pref., v$) \beta_{2}(\mathrm{v})$

Forward-Backward Algorithm: Finds Marginals

"belief that $Y_{2}=\mathrm{v}$ "
"belief that $Y_{2}=\mathbf{n} "$
"belief that $Y_{2}=\mathrm{a}$ "
sum = Z
(total weight of all paths) total weight of all paths through a

$$
=\alpha_{2}(\mathrm{a}) \mathrm{A}(\text { pref., } \mathrm{a}) \quad \beta_{2}(\mathrm{a})
$$

Forward-Backward Algorithm

Forward-Backward Algorithm

1. Initialize

$$
\begin{aligned}
\alpha_{0}(\text { START }) & =1 \\
\beta_{T+1}(\text { END }) & =1
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{0}(k) & =0, \quad \forall k \neq \text { START } \\
\beta_{T+1}(k) & =0, \quad \forall k \neq \text { END }
\end{aligned}
$$

2. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \alpha_{t}(k)=\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
$$

3. Backward Algorithm

$$
\begin{aligned}
& \text { for } t=T, \ldots, 0 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \qquad \beta_{t}(k)=\sum_{j=1}^{K} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
\end{aligned}
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}$ (END)
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

Forward-Backward Algorithm

1. Initialize

$$
\begin{aligned}
\alpha_{0}(\text { START }) & =1 \\
\beta_{T+1}(\text { END }) & =1
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{0}(k) & =0, \quad \forall k \neq \text { START } \\
\beta_{T+1}(k) & =0, \forall k \neq \text { END }
\end{aligned}
$$

2. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1: \\
& \quad \text { for } k=1, \ldots, K: \\
& \left\{\begin{array}{l}
\alpha_{t}(k)=\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{array}\right.
\end{aligned}
$$

$\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~T}\right)$
$\mathrm{O}(\mathrm{K})$ <ward Algorithm

$$
\text { for } t=T, \ldots, 0 \text { : }
$$

Brute force or $k=1, \ldots, K$:
algorithm
would be $\mathrm{O}\left(\mathrm{K}^{\top}\right)$

$$
\beta_{t}(k)=\sum_{j=1}^{K} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}($ END $)$
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

THE VITERBI ALGORITHM

Inference for HMMs

Whiteboard

- Viterbi algorithm
(edge weights version)

Viterbi Algorithm

Definitions

$$
\begin{aligned}
& \omega_{t}(k) \triangleq \max _{y_{1}, \ldots, y_{t-1}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right) \\
& b_{t}(k) \triangleq \underset{y_{1}, \ldots, y_{t-1}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)
\end{aligned}
$$

Assume
$y_{0}=$ START
$y_{T+1}=$ END

1. Initialize

$$
\omega_{0}(\text { START })=1 \quad \omega_{0}(k)=0, \forall k \neq \text { START }
$$

2. Viterbi Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \qquad \begin{array}{rl}
\text { for } k & k=1, \ldots, K \text { : } \\
\qquad \omega_{t}(k)=\max _{j \in\{1, \ldots, K\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right) \\
b_{t}(k)=\underset{j \in\{1, \ldots, K\}}{\operatorname{argmax}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{array}
\end{aligned}
$$

3. Compute Most Probable Assignment

$$
\begin{aligned}
& \hat{y}_{T}=b_{T+1}(\mathrm{END}) \\
& \text { for } t=T, \ldots, 1: \\
& \qquad \hat{y}_{t}=b_{t+1}\left(\hat{y}_{t+1}\right)
\end{aligned}
$$

Viterbi Algorithm

Definitions

$$
\begin{aligned}
& \omega_{t}(k) \triangleq \max _{y_{1}, \ldots, y_{t-1}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right) \\
& b_{t}(k) \triangleq \underset{y_{1}, \ldots, y_{t-1}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t-1}, y_{t}=k\right)
\end{aligned}
$$

Assume
$y_{0}=$ START
$y_{T+1}=\mathrm{END}$

1. Initialize

$$
\omega_{0}(\mathrm{START})=1 \quad \omega_{0}(k)=0, \forall k \neq \text { START }
$$

2. Viterbi Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1: \\
& \qquad \begin{aligned}
\text { for } k=1 & \ldots, K: \\
& \omega_{t}(k)=\max _{j \in\{1, \ldots, K\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right) \\
& b_{t}(k)=\operatorname{argmax}_{j \in\{1, \ldots, K\}} p\left(x_{t} \mid y_{t}=k\right) \omega_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
\end{aligned}
\end{aligned}
$$

$\mathrm{O}\left(\mathrm{K}^{2} \mathrm{~T}\right)$

Brute force algorithm would be $\mathrm{O}\left(\mathrm{K}^{\top}\right)$

$$
\begin{aligned}
& \hat{y}_{T}=b_{T+1}(\mathrm{END}) \\
& \text { for } t=T, \ldots, 1:
\end{aligned}
$$

$$
\hat{y}_{t}=b_{t+1}\left(\hat{y}_{t+1}\right)
$$

Inference in HMMs

What is the computational complexity of inference for HMMs?

- The naïve (brute force) computations for Evaluation, Decoding, and Marginals take exponential time, $\mathrm{O}\left(\mathrm{K}^{\top}\right)$
- The forward-backward algorithm and Viterbi algorithm run in polynomial time, $\mathrm{O}\left(\mathrm{T}^{*} \mathrm{~K}^{2}\right)$
- Thanks to dynamic programming!

Shortcomings of
 Hidden Markov Models

- HMM models capture dependences between each state and only its corresponding observation
- NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (nonlocal) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
- HMM learns a joint distribution of states and observations $P(\mathbf{Y}, \mathbf{X})$, but in a prediction task, we need the conditional probability $\mathrm{P}(\mathbf{Y} \mid \mathbf{X})$

FORWARD-BACKWARD IN LOG SPACE

Forward-Backward Algorithm

1. Initialize

Problem:

Implementing F-B as shown here could run into underflow (i.e. floating point precision issues).

As:

Why?

y_{0} Because the algorithm is still y_{T} multiplying $\mathrm{O}(\mathrm{T})$ probabilities together. Each probability is in $[0,1]$ and so their product can get very small.

One solution:

 work in log-space!$$
\alpha_{0}(\text { START })=1
$$

$$
\beta_{T+1}(\mathrm{END})=1
$$

$$
\begin{aligned}
\alpha_{0}(k) & =0, \quad \forall k \neq \text { START } \\
\beta_{T+1}(k) & =0, \forall k \neq \text { END }
\end{aligned}
$$

Forward Algorithm

$$
\text { for } t=1, \ldots, T+1 \text { : }
$$

$$
\text { for } k=1, \ldots, K \text { : }
$$

$$
\alpha_{t}^{(h)}-\sum_{j=1}^{K} p\left(x_{t} \mid y_{t}=k\right) \alpha_{t-1}(j) p\left(y_{t}=k \mid y_{t-1}=j\right)
$$

Backward Algorithm

$$
\text { for } t=T, \ldots, 0 \text { : }
$$

$$
\text { for } k=1, \ldots, K \text { : }
$$

$$
\beta_{t}(k)=\sum_{j=1}^{k} p\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j) p\left(y_{t+1}=j \mid y_{t}=k\right)
$$

4. Evaluation $p(\mathbf{x})=\alpha_{T+1}$ (END)
5. Marginals $p\left(y_{t}=k \mid \mathbf{x}\right)=\frac{\alpha_{t}(k) \beta_{t}(k)}{p(\mathbf{x})}$

Log-space Arithmetic

Log-space Multiplication

- Suppose you wish to multiply two probabilities p_{a} and p_{b} together to get $p_{c}=p_{a} p_{b}$
- Yet, you want to represent all those numbers as the log of their value:
- $\mathrm{o}_{\mathrm{a}}=\log \left(\mathrm{p}_{\mathrm{a}}\right)$
- $\mathrm{o}_{\mathrm{b}}=\log \left(\mathrm{p}_{\mathrm{b}}\right)$
$-o_{c}=\log \left(p_{c}\right)$
- To compute o_{c} from o_{a} and o_{b} we simply add them:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{c}} & =\mathrm{o}_{\mathrm{a}}+\mathrm{o}_{\mathrm{b}} \\
& =\log \left(\mathrm{p}_{\mathrm{a}}\right)+\log \left(\mathrm{p}_{\mathrm{b}}\right) \\
& =\log \left(\mathrm{p}_{\mathrm{a}} \mathrm{p}_{\mathrm{b}}\right) \\
& =\log \left(\mathrm{p}_{\mathrm{c}}\right)
\end{aligned}
$$

Log-space Addition

- Suppose you wish to add two probabilities p_{a} and p_{b} together to get $p_{d}=p_{a}+p_{b}$, yet all in logspace (e.g. $\left.\mathrm{o}_{\mathrm{d}}=\log \left(\mathrm{p}_{\mathrm{d}}\right)\right)$
- To compute compute o_{d} from o_{a} and o_{b} we must be more careful:

$$
\begin{aligned}
\mathrm{O}_{\mathrm{d}} & =\log -\text { sum- } \exp \left(\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right) \\
& =\log \left(\exp \left(\mathrm{o}_{\mathrm{a}}\right)+\exp \left(\mathrm{o}_{\mathrm{b}}\right)\right)
\end{aligned}
$$

- Problem: if we merely implement log-sum-exp as above, we'll probably run into underflow again b / c :
- $\mathrm{p}_{\mathrm{a}}=\exp \left(\mathrm{o}_{\mathrm{a}}\right)$
- $\mathrm{p}_{\mathrm{b}}=\exp \left(\mathrm{o}_{\mathrm{b}}\right)$

Log-space Arithmetic

A careful implementation:

$$
\begin{aligned}
& \text { def } \log -\operatorname{sum}-\exp \left(x_{1}, \ldots, x_{N}\right): \\
& c=\max \left(x_{1}, \ldots, x_{N}\right) \\
& y=c+\log \sum_{n=1}^{N} \exp \left(x_{n}-c\right) \\
& \quad \text { return } y
\end{aligned}
$$

Why does this work?

$$
\begin{aligned}
& y=\log \sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\frac{\exp (c)}{\exp (c)} \sum_{n=1}^{N} \exp \left(x_{n}\right) \\
\Rightarrow & \exp (y)=\exp (c) \sum_{n=1}^{N} \exp \left(x_{n}-c\right) \\
\Rightarrow & y=c+\log \sum_{n=1}^{N} \exp \left(x_{n}-c\right)
\end{aligned}
$$

Log-space Addition

- Suppose you wish to add two probabilities p_{a} and p_{b} together to get $p_{d}=p_{a}+p_{b}$, yet all in logspace (e.g. $\left.o_{d}=\log \left(p_{d}\right)\right)$
- To compute compute O_{d} from o_{a} and o_{b} we must be more careful:

$$
\begin{aligned}
\mathrm{o}_{\mathrm{d}} & =\log -\text { sum- } \exp \left(\mathrm{o}_{\mathrm{a}}, \mathrm{o}_{\mathrm{b}}\right) \\
& =\log \left(\exp \left(\mathrm{o}_{\mathrm{a}}\right)+\exp \left(\mathrm{o}_{\mathrm{b}}\right)\right)
\end{aligned}
$$

- Problem: if we merely implement log-sum-exp as above, we'll probably run into underflow again b / c :
- $\mathrm{p}_{\mathrm{a}}=\exp \left(\mathrm{o}_{\mathrm{a}}\right)$
- $\mathrm{p}_{\mathrm{b}}=\exp \left(\mathrm{o}_{\mathrm{b}}\right)$

Forward Algorithm (in log-space)

We can run the forward algorithm in log-space using log-multiplication and log-addition. The backward algorithm is analogous.

```
Definitions
log}\mp@subsup{\alpha}{t}{}(k)\triangleq\operatorname{log}p(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{t}{},\mp@subsup{y}{t}{}=k
```

Assume

$$
y_{0}=\operatorname{START}
$$

1. Initialize

$$
\log \alpha_{0}(\text { START })=0 \quad \log \alpha_{0}(k)=-\infty, \forall k \neq \text { START }
$$

2. Forward Algorithm

$$
\begin{aligned}
& \text { for } t=1, \ldots, T+1 \text { : } \\
& \text { for } k=1, \ldots, K \text { : } \\
& \text { for } j=1, \ldots, K \text { : } \\
& \quad o_{j}=\log p\left(x_{t} \mid y_{t}=k\right)+\log \alpha_{t-1}(j)+\log p\left(y_{t}=k \mid y_{t-1}=j\right) \\
& \log \alpha_{t}(k)=\log \text {-sum-exp }\left(o_{1}, \ldots, o_{K}\right)
\end{aligned}
$$

3. Evaluation $\log p(\mathbf{x})=\log \alpha_{T+1}($ END $)$

MBR DECODING

Inference for HMMs

- Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of hidden states, given a sequence of observations (Viterbi decoding is a special case)

Minimum Bayes Risk Decoding

- Suppose we given a loss function $l\left(y^{\prime}, \boldsymbol{y}\right)$ and are asked for a single tagging
- How should we choose just one from our probability distribution $p(\boldsymbol{y} \mid \boldsymbol{x})$?
- A minimum Bayes risk (MBR) decoder $h(\boldsymbol{x})$ returns the variable assignment with minimum expected loss under the model's distribution

Minimum Bayes Risk Decoding
 $$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The $0-1$ loss function returns 0 only if the two assignments are identical and l otherwise:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})
$$

The MBR decoder is:

$$
\begin{aligned}
h_{\boldsymbol{\theta}}(\boldsymbol{x}) & =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \sum_{\boldsymbol{y}} p_{\boldsymbol{\theta}}(\boldsymbol{y} \mid \boldsymbol{x})(1-\mathbb{I}(\hat{\boldsymbol{y}}, \boldsymbol{y})) \\
& =\underset{\hat{\boldsymbol{y}}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(\hat{\boldsymbol{y}} \mid \boldsymbol{x})
\end{aligned}
$$

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

$$
h_{\boldsymbol{\theta}}(\boldsymbol{x})=\underset{\hat{\boldsymbol{y}}}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{y} \sim p_{\boldsymbol{\theta}}(\cdot \mid \boldsymbol{x})}[\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})]
$$

Consider some example loss functions:
The Hamming loss corresponds to accuracy and returns the number of incorrect variable assignments:

$$
\ell(\hat{\boldsymbol{y}}, \boldsymbol{y})=\sum_{i=1}^{V}\left(1-\mathbb{I}\left(\hat{y}_{i}, y_{i}\right)\right)
$$

The MBR decoder is:

$$
\hat{y}_{i}=h_{\boldsymbol{\theta}}(\boldsymbol{x})_{i}=\underset{\hat{y}_{i}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}\left(\hat{y}_{i} \mid \boldsymbol{x}\right)
$$

This decomposes across variables and requires the variable marginals.

TO HMMS AND BEYOND...

Unsupervised Learning for HMMs

- Unlike discriminative models $p(y \mid x)$, generative models $p(x, y)$ can maximize the likelihood of the data $D=\left\{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\right\}$ where we don't observe any y's.
- This unsupervised learning setting can be achieved by finding parameters that maximize the marginal likelihood
- We optimize using the Expectation-Maximization algorithm

Since we don't observe \mathbf{y}, we define the marginal probability:

$$
p_{\boldsymbol{\theta}}(\mathbf{x})=\sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{y})
$$

The log-likelihood of the data is thus:

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\log \prod_{i=1}^{N} p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right) \\
& =\sum_{i=1}^{N} \log \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}, \mathbf{y}\right)
\end{aligned}
$$

HMMs: History

- Markov chains: Andrey Markov (1906)
- Random walks and Brownian motion
- Used in Shannon's work on information theory (1948)
- Baum-Welsh learning algorithm: late 60's, early 70's.
- Used mainly for speech in 60s-70s.
- Late 80's and 90's: David Haussler (major player in learning theory in 80's) began to use HMMs for modeling biological sequences
- Mid-late 1990's: Dayne Freitag/Andrew McCallum
- Freitag thesis with Tom Mitchell on IE from Web using logic programs, grammar induction, etc.
- McCallum: multinomial Naïve Bayes for text
- With McCallum, IE using HMMs on CORA

Higher-order HMMs

- $1^{\text {st }}$-order HMM (i.e. bigram HMM)

- $3^{\text {rd-order }} \mathrm{HMM}$

Higher-order HMMs

- $1^{\text {st-order }}$ HMM (i.e. bigram HMM)

Learning Objectives

Hidden Markov Models

You should be able to...

1. Show that structured prediction problems yield high-computation inference problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
6. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

Bayesian Networks

DIRECTED GRAPHICAL MODELS

Example: CMU Mission Control


```
(4) WESA
```

Pittsburgh's first mission control center to land at CMU ahead of 2022 lunar rover launch

Bayesian Network

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Bayesian Network

Definition:

$$
P\left(X_{1}, \ldots, X_{T}\right)=\prod_{t=1}^{T} P\left(X_{t} \mid \text { parents }\left(X_{t}\right)\right)
$$

- A Bayesian Network is a directed graphical model
- It consists of a graph G and the conditional probabilities P
- These two parts full specify the distribution:
- Qualitative Specification: G
- Quantitative Specification: P

Qualitative Specification

- Where does the qualitative specification come from?
- Prior knowledge of causal relationships
- Prior knowledge of modular relationships
- Assessment from experts
- Learning from data (i.e. structure learning)
- We simply prefer a certain architecture (e.g. a layered graph)
-...

Quantitative Specification

Example: Conditional probability tables (CPTs)
for discrete random variables

a^{0}	0.75
a^{1}	0.25

b^{0}	0.33
b^{1}	0.67

$$
\begin{gathered}
P(a, b, c . d)= \\
P(a) P(b) P(c \mid a, b) P(d \mid c)
\end{gathered}
$$

Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

$$
\mathrm{A} \sim \mathrm{~N}\left(\mu_{a}, \Sigma_{a}\right) \quad \mathrm{B} \sim \mathrm{~N}\left(\mu_{\mathrm{b}}, \Sigma_{\mathrm{b}}\right)
$$

$$
\begin{gathered}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c} \cdot \mathrm{~d})= \\
\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{~b}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}, \mathrm{~b}) \mathrm{P}(\mathrm{~d} \mid \mathrm{c})
\end{gathered}
$$

Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a^{0}	0.75
a^{1}	0.25

b^{0}	0.33
b^{1}	0.67

$$
\begin{gathered}
\mathrm{P}(\mathrm{a}, \mathrm{~b}, \mathrm{c} \cdot \mathrm{~d})= \\
\mathrm{P}(\mathrm{a}) \mathrm{P}(\mathrm{~b}) \mathrm{P}(\mathrm{c} \mid \mathrm{a}, \mathrm{~b}) \mathrm{P}(\mathrm{~d} \mid \mathrm{c})
\end{gathered}
$$

Observed Variables

- In a graphical model, shaded nodes are "observed", i.e. their values are given

Example:

$$
P\left(X_{2}, X_{5} \mid X_{1}=0, X_{3}=1, X_{4}=1\right)
$$

Familiar Models as Bayesian Networks

Question:

Match the model name to the corresponding Bayesian Network

1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian

Answer:

GRAPHICAL MODELS: DETERMINING CONDITIONAL INDEPENDENCIES

What Independencies does a Bayes Net Model?

- In order for a Bayesian network to model a probability distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants in the graph given the value of all its parents.

- This follows from $P\left(X_{1}, \ldots, X_{T}\right)=\prod_{t=1}^{T} P\left(X_{t} \mid\right.$ parents $\left.\left(X_{t}\right)\right)$

$$
=\prod_{t=1}^{T} P\left(X_{t} \mid X_{1}, \ldots, X_{t-1}\right)
$$

- But what else does it imply?

What Independencies does a Bayes Net Model?
Three cases of interest...
Cascade

Common Parent

V-Structure

What Independencies does a Bayes Net Model?
Three cases of interest...

Cascade

$X \Perp Z \mid Y$

Common Parent

$X \Perp Z \mid Y$

V-Structure

P
 $X \not \Perp Z \mid Y$

Knowing Y
decouples X and Z

Knowing Y couples X and Z

Whiteboard

(The other two cases can be shown just as easily.)

The "Burglar Alarm" example

- Your house has a twitchy burglar alarm that is also sometimes triggered by earthquakes.
- Earth arguably doesn't care whether your house is currently being burgled
- While you are on vacation, one of your neighbors calls and tells you your home's burglar alarm is ringing. Uh oh!

Quiz: True or False?

$$
\text { Burglar } \Perp \text { Earthquake | PhoneCall }
$$

The "Burglar Alarm" example

- After you get this phone call, suppose you learn that there was a medium-sized earthquake in your neighborhood. Oh, whew! Probably not a burglar after all.
- Earthquake "explains away" the hypothetical burglar.

- But then it must not be the case that

$$
\text { Burglar } \Perp \text { Earthquake } \mid \text { PhoneCall }
$$

even though
Burglar \Perp Earthquake

Markov Boundary

Def: the co-parents of a node are the parents of its children

Def: the Markov boundary of a node is the set containing the node's parents, children, and co-parents.

Markov Boundary

Def: the co-parents of a node are the parents of its children

Def: the Markov boundary of a node is the set containing the node's parents, children, and co-parents.

Example: The Markov boundary of X_{6} is $\left\{X_{3}, X_{4}, X_{5}, X_{8}, X_{9}, X_{10}\right\}$

Markov Boundary

Def: the co-parents of a node are the parents of its children

Def: the Markov boundary of a node is the set containing the node's parents, children, and co-parents.

Theorem: a node is conditionally independent of every other node in the graph given its Markov boundary

Example: The Markov boundary of X_{6} is $\left\{X_{3}, X_{4}, X_{5}, X_{8}, X_{9}, X_{10}\right\}$

D-Separation

Definition \#1:

Variables X and Z are d-separated given a set of evidence variables E (variables that are observed) iff every path from X to Z is "blocked".

A path is "blocked" whenever:

1. $\exists \mathrm{Y}$ on path s.t. $\mathrm{Y} \in \mathrm{E}$ and Y is a "common parent"

2. $\exists \mathrm{Y}$ on path s.t. $\mathrm{Y} \in \mathrm{E}$ and Y is in a "cascade"

3. $\exists \mathrm{Y}$ on path s.t. $\{\mathrm{Y}$, descendants $(\mathrm{Y})\} \notin \mathrm{E}$ and Y is in a " V -structure"

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

D-Separation

If variables X and Z are d-separated given a set of variables E Then X and Z are conditionally independent given the set E

Definition \#2:

Variables X and Z are d-separated given a set of evidence variables E iff there does not exist a path between X and Z in the undirected ancestrall moral graph with E removed.

1. Ancestral graph: keep only X, Z, E and their ancestors
2. Moral graph: add undirected edge between all pairs of each node's parents
3. Undirected graph: convert all directed edges to undirected
4. Givens Removed: delete any nodes in E

Example Query: $A \Perp B \mid\{D, E\}$

SUPERVISED LEARNING FOR BAYES NETS

Recipe for Closed-form MLE

1. Assume data was generated i.i.d. from some model (i.e. write the generative story)

$$
x^{(i)} \sim p(x \mid \theta)
$$

2. Write log-likelihood

$$
\ell(\boldsymbol{\theta})=\log p\left(x^{(1)} \mid \boldsymbol{\theta}\right)+\ldots+\log p\left(x^{(N)} \mid \boldsymbol{\theta}\right)
$$

3. Compute partial derivatives (i.e. gradient)

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{1}=\ldots \\
& \partial \ell(\theta) / \partial \theta_{2}=\ldots
\end{aligned}
$$

$$
\partial \ell(\theta) / \partial \theta_{M}=\ldots
$$

4. Set derivatives to zero and solve for $\boldsymbol{\theta}$

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{m}=o \text { for all } m \in\{1, \ldots, M\} \\
& \boldsymbol{\theta}^{\text {MLE }}=\text { solution to system of } M \text { equations and } M \text { variables }
\end{aligned}
$$

5. Compute the second derivative and check that $\ell(\boldsymbol{\theta})$ is concave down at $\boldsymbol{\theta}^{\text {MLE }}$

Machine Learning

The data inspires
the structures
we want to
predict

Inference finds

 \{best structure, marginals, partition function $\}$ for a new observation(Inference is usually called as a subroutine in learning)

Our model defines a score for each structure

It also tells us what to optimize

Learning tunes the parameters of the model

Machine Learning

Inference

(Inference is usually called as a subroutine in learning)

Model

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

Learning Fully Observed BNs

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

How do we learn these conditional and marginal distributions for a Bayes Net?

Learning Fully Observed BNs

Learning this fully observed Bayesian Network is equivalent to learning five (small / simple) independent

$$
\begin{aligned}
& p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)= \\
& p\left(X_{5} \mid X_{3}\right) p\left(X_{4} \mid X_{2}, X_{3}\right) \\
& p\left(X_{3}\right) p\left(X_{2} \mid X_{1}\right) p\left(X_{1}\right)
\end{aligned}
$$

networks from the same data

Learning Fully Observed BNs

How do we learn these
conditional and marginal
distributions for a Bayes Net?

$$
\begin{aligned}
& \boldsymbol{\theta}^{*}= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right) \\
&=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p\left(X_{5} \mid X_{3}, \theta_{5}\right)+\log p\left(X_{4} \mid X_{2}, X_{3}, \theta_{4}\right) \\
& \quad+\log p\left(X_{3} \mid \theta_{3}\right)+\log p\left(X_{2} \mid X_{1}, \theta_{2}\right) \\
& \quad+\log p\left(X_{1} \mid \theta_{1}\right) \\
& \\
& \theta_{1}^{*}=\underset{\theta_{1}}{\operatorname{argmax}} \log p\left(X_{1} \mid \theta_{1}\right) \\
& \theta_{2}^{*}=\underset{\theta_{2}}{\operatorname{argmax}} \log p\left(X_{2} \mid X_{1}, \theta_{2}\right) \\
& \theta_{3}^{*}=\underset{\theta_{3}}{\operatorname{argmax}} \log p\left(X_{3} \mid \theta_{3}\right) \\
& \theta_{4}^{*}= \underset{\theta_{4}}{\operatorname{argmax}} \log p\left(X_{4} \mid X_{2}, X_{3}, \theta_{4}\right) \\
& \theta_{5}^{*}=\underset{\theta_{5}}{\operatorname{argmax}} \log p\left(X_{5} \mid X_{3}, \theta_{5}\right)
\end{aligned}
$$

Example: Tornado Alarms

1. Imagine that you work at the 911 call center in Dallas
2. You receive six calls informing you that the Emergency Weather Sirens are going off
3. What do you conclude?

Example: Tornado Alarms

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

1. Imagine that you work at the 911 call center in Dallas
2. You receive six calls informing you that the Emergency Weather Sirens are going off
3. What do you conclude?

Learning Fully Observed BNs
Ex: Tornado Alarms

Dataset

i| T | H | A | C |
| :--- | :--- | :--- | :--- |
| 1 | | | |
| 3 | | | |
| 3 | 0 0 0 2
 0 0 0 6
 0 0 0 4
 1 0 0 3
 1 0 0 1
 1 0 1 10
 1 0 1 7
 0 1 0 2
 0 1 1 12
 0 1 0 5
 1 1 1 10
 1 0 0 2 | | |
| | | | |
| 12 | | | |

What are the MEs?

$$
\begin{aligned}
& \hat{\eta}=1 / 3 \\
& \tilde{\tau}=1 / 2 \\
& \hat{\alpha}=\begin{array}{c|c|c|}
H-0 & H-1 \\
T=1 & 0 & 1 / 3 \\
\hline 2 / 3 & 1 \\
\hline
\end{array}
\end{aligned}
$$

INFERENCE FOR BAYESIAN NETWORKS

A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1. How do we compute the probability of a specific assignment to the variables?
$\mathrm{P}(\mathrm{T}=\mathrm{t}, \mathrm{H}=\mathrm{h}, \mathrm{A}=\mathrm{a}, \mathrm{C}=\mathrm{c})$
2. How do we draw a sample from the joint distribution?
$\mathrm{t}, \mathrm{h}, \mathrm{a}, \mathrm{c} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A}, \mathrm{C})$
3. How do we compute marginal probabilities?

$$
P(A)=\ldots
$$

4. How do we draw samples from a conditional distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A} \mid \mathrm{C}=\mathrm{c})$
5. How do we compute conditional marginal probabilities? $P(H \mid C=c)=\ldots$

Can we
use
samples

Gibbs Sampling

Gibbs Sampling

Gibbs Sampling

Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
$y_{1}, y_{2}, \ldots, y_{j} \sim p\left(y_{1}, y_{2}, \ldots, y_{\jmath} \mid x_{1}, x_{2}, \ldots, x_{\jmath}\right)$

(Approximate) Solution:

- Initialize $y_{1}{ }^{(0)}, y_{2}{ }^{(0)}, \ldots, y_{j}{ }^{(0)}$ to arbitrary values
- Fort $=1,2, \ldots$:
- $y_{1}^{(t+1)} \sim p\left(y_{1} \mid y_{2}{ }^{(t)}, \ldots, y_{j}{ }^{(t)}, x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
- $y_{2}^{(t+1)} \sim p\left(y_{2} \mid y_{1}^{(t+1)}, y_{3}^{(t)}, \ldots, y_{j}{ }^{(t)}, x_{1}, x_{2}, \ldots, x_{\jmath}\right)$
- $y_{3}{ }^{(t+1)} \sim p\left(y_{3} \mid y_{1}^{(t+1)}, y_{2}^{(t+1)}, y_{4}^{(t)}, \ldots, y_{j}^{(t)}, x_{1}, x_{2}, \ldots, x_{j}\right)$
- $y_{j}{ }^{(t+1)} \sim p\left(y_{j} \mid y_{1}^{(t+1)}, y_{2}^{(t+1)}, \ldots, y_{J_{-1}^{(t+1)}}^{\left(y_{1}\right.}, x_{2}, \ldots, x_{\jmath}\right)$

Properties:

- This will eventually yield samples from

$$
p\left(y_{1}, y_{2}, \ldots, y_{\jmath} \mid x_{1}, x_{2}, \ldots, x_{\jmath}\right)
$$

- But it might take a long time -- just like other Markov Chain Monte Carlo methods

Gibbs Sampling

Full conditionals only need to condition on the Markov boundary

- Must be "easy" to sample from conditionals
- Many conditionals are log-concave and are amenable to adaptive rejection sampling

Learning Objectives

Bayesian Networks

You should be able to...

1. Identify the conditional independence assumptions given by a generative story or a specification of a joint distribution
2. Draw a Bayesian network given a set of conditional independence assumptions
3. Define the joint distribution specified by a Bayesian network
4. User domain knowledge to construct a (simple) Bayesian network for a realworld modeling problem
5. Depict familiar models as Bayesian networks
6. Use d-separation to prove the existence of conditional indenpendencies in a Bayesian network
7. Employ a Markov boundary to identify conditional independence assumptions of a graphical model
8. Develop a supervised learning algorithm for a Bayesian network
9. Use samples from a joint distribution to compute marginal probabilities
10. Sample from the joint distribution specified by a generative story
11. Implement a Gibbs sampler for a Bayesian network
