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Reminders

* Practice Problems: Exam 2
— Out: Fri, Nov. 4
* Exam 2
— Thu, Nov. 10, 6:30pm - 8:30pm
* Homework 7: Hidden Markov Models

— Out: Fri, Nov. 11
— Due: Mon, Nov. 21 at 11:59pm




EXAMPLE: FORWARD-BACKWARD
ON THREE WORDS



Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb



Forward-Backward Algorithm
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Forward-Backward Algorithm
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* Let’s show the possible values for each variable



Forward-Backward Algorithm

* Let’s show the possible values for each variable
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Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment



Forward-Backward Algorithm

* Let’s show the possible values for each variable
* One possible assignment
* And what the 7 transition / emission factors think of it ...
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Forward-Backward Algorithm
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* Let’s show the possible values for each variable
* One possible assignment
* And what the 7 transition / emission factors think of it ...



Viterbi Algorithm: Most Probable Assignment

A\ "
A % W A\ B(a,END) A
WA W

* Sop(van)=(1/Z) * product of 7 numbers
* Numbers associated with edges and nodes of path
* Most probable assignment = path with highest product



Viterbi Algorithm: Most Probable Assignment

<) A /"\ A
o AL RS
A (a,END)

A(pref., a)

* Sop(van)=(1/Z) * product weight of one path



Forward-Backward Algorithm: Finds Marginals

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = a)
> (1/7) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

n A <A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/2) * total weight of VAN



Forward-Backward Algorithm: Finds Marginals

™

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = v)
> (1/7) * total weight of ANE



Forward-Backward Algorithm: Finds Marginals

n A <A

* Sop(van)=(1/Z) * product weight of one path

* Marginal probability p(Y, = n)
> (1/2) * total weight of VANE



Forward-Backward Algorithm: Finds Marginals

= total weight of these
path preﬂgxes

20

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

- = total weight of these
path suffixes

21

(found by dynamic programming: matrix-vector products)



Forward-Backward Algorithm: Finds Marginals

= total weight of these = total weight of these
path preﬂgxes (@a+b+0) - path suff§<es (x+y+2)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Forward-Backward Algorithm: Finds Marginals

. % o
4. Alpref,n)

total weight of o/l paths throughA
= o) Aref,n) By(n)
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Forward-Backward Algorithm: Finds Marginals

A “belief that Y, =v”’

el > “belief that ¥, =n”
:0‘2(‘7) Bz(vz
-
A(pref., v)

total weight of A

= (V) A(pref, v) B,(v)
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Forward-Backward Algorithm: Finds Marginals

v “belief that Y, =v”’

“belief that Y, =n"

P(@)
“belief that ¥, =a”
sum=2
A(pret., a) (total weight
of all paths)

total weight of A

= o(a) A(pref,a) B,(a)
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Forward-Backward Algorithm

Could be verb or noun Could be adjective or verb  Could be noun or verb
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Forward-Backward Algorithm

1. Initialize
o (START) = 1 ao(k) = 0, Vk # START
Br+1(END) =1 Bryi(k) =0, Vk # END
Definitions
ay(k) £ p(a1,. .., 2,y = k) 2. Forward Algorithm
Bu(k) = pl@ess, ... or [ ye = k) fort=1,..., T+ 1:
fork=1,..., K:
Assume =
k p— p— k _ ) pr— k‘ _ pr— )
Yo — START at (k) ;p(wt |yt = k)ar—1(G)p(ye = k | ye—1 = J)
= END
At 3. Backward Algorithm
fort=1T,...,0:
fork=1,..., K:
K
Bi(k) =Y p(@er1 | Yr1 = H)Ber(DpWesr =3 | ye = k)
j=1

4. Evaluation p(x) = ap4+1(END)

ot (k) B (k)

5. Marginals p(y; = k | x) = p(x)



Forward-Backward Algorithm

1. Initialize
oo (START) = 1 ao(k) = 0, Vk # START
Br.1(END) = 1 Bri1(k) =0, Vk # END
Definitions
ay(k) = p(x1, ..., 2,y = k) 2. Forward Algorithm
Bu(k) £ p(@rts,- - o |4 = By fort=1,..., 7T+ 1:
fork=1,..., K:
Assume ) =
g <|: a (k) Z (24 | ye = k)1 ()p(ye = k | ye—1 = J)
= END
T o(k2T) | O(K) ward Algorithm
fort =
Brute force = ,...,K:
algorithm &€ . _ ‘
wouldbe & > p@er | Y1 = )Brr(Dpyesr =5 | ye = k)
O(KT) o=t
4. Evaluation p(x) = ap41(END)

s ()8 (k) .

5. Marginals p(y; = k | x) = == 75



THE VITERBI ALGORITHM



Inference for HMMs

Whiteboard

— Viterbi algorithm
(edge weights version)



Viterbi Algorithm

Definitions
A

we (k) £  max p(T1, e T Y1y Y1, Y = K) SSUMe

Yis---H Yt—1 Yo = START
bt(k) = argmax p(xla ceey Lty Y1y - -5 Yt—1, Yt = k) Yr+1 = END

Yi,---,Yt—1

1. Initialize
wO(START) =1 wo(k) = 0, Vk # START

2. Viterbi Algorithm

fort=1,...,T + 1:
fork=1,... K:

wi(k) = max p(zy |y = k)wi—1(J)p(ye =k | ye—1 = J)
je{1,....K}

bi(k) = argmax p(xs | ys = k)wi—1(J)p(ye =k | y4—1 = J)
je{l.... K}

3. Compute Most Probable Assignment
?QT = bT_|_1(END)
fort=1T,...,1:
Jt = bi11(Je+1)



Viterbi Algorithm

Definitions
A
wt<k) é max p(xlw"7xt7y17"°7yt—17yt :k) >SHMe
Yl Yt—1 yo = START
bt(k) = argimax p(xlv sy Tt Y1y -0 -5 Yt—1, Yt = k) Yr+1 = END
Yi,.-5Yt—1
1. Initialize
wo(START) =1 wo(k) = 0, Vk #£ START
2. Viterbi Algorithm
: fort=1,..., T+ 1:
fork=1,... K:

Brute force
algorithm

would be
O(KT")

wi(k) = max p(z¢ |y =k)wi—1(J)p(ye =k | ye—1 = J)
je{1,....K}

bi(k) = argmax p(xs | ys = k)wi—1(J)p(ye =k | y4—1 = J)
jG{l,...,K}

3. Compute Most Probable Assignment
:I;/T = bT_|_1(END)
fort=1T,...,1:

Ut = bey1 (Y1) 34



Inference in HMMs

What is the computational complexity of
inference for HMMSs?

* The naive (brute force) computations for

Evaluation, Decoding, and Marginals take
exponential time, O(K')

* The forward-backward algorithm and Viterbi
algorithm runin , O(T*K?)
— Thanks to dynamic programming!



Shortcomings of
Hidden Markov Models

HMM models capture dependences between each state and only its

corresponding observation

— NLP example: In a sentence segmentation task, each segmental state may depend

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white

space, etc.
Mismatch between learning objective function and prediction objective

function
— HMM learns a joint distribution of states and observations P(Y, X), but in a prediction
task, we need the conditional probability P(Y|X)

© Eric Xing @ CMU, 2005-2015 36



FORWARD-BACKWARD IN LOG
SPACE



Forward-Backward Algorithm

1.

Problem:
Implementing F-B as shown
here could run into
B: underflow (i.e. floating point

precision issues).

De

O

AS: Why?
Yo Because the algorithm is still
yr multiplying O(T) probabilities
together. Each probability is
in[0,1] and so their product
can get very small.

One solution:
work in log-space!

Initialize

ao(START) =1 ag(k) = 0, Vk # START
Br+1(END) =1 Bri1(k) =0, Yk # END
Forward Algorithm

fort=1,...,T+ 1:
fork=1,..., K:

K
=P p(@e | ye = K)ar—1(Dp(ye = & | yr-1 = )
j=1
Backward Algorithm
fort=1T,...,0:
fork =1,... K:
K
Bi(k) = D" (@it | yerr = 5)Brr(p(yers = j | ye = k)
j=1

4. Evaluation p(x) = ap4+1(END)

5. Marginals p(y; = k | x) =

at(k)B: (k)
p(x)



Log-space Arithmetic

Log-space Multiplication

* Suppose you wish to multiply
two probabilities p, and p,
together to get p. = p, ps

* Yet, you want to represent all
those numbers as the log of
their value:

— 0= Iog(pa)
— 0p = log(py)
— O¢= Iog(pc)

* To compute o. from o, and o,
we simply add them:
O = 0, + Oy
=log(p,) + log(ps)
= Iog Pa pb)
= |08 pc)

Log-space Addition

Suppose you wish to add two
probabilities p, and p, together
to get py = p, + Pw, Yet all in log-
space (e.g. 04=log(pa))

To compute compute o4 from o,
and o, we must be more careful:

04 = log-sum-exp(o,, 0},)
= log(exp(0,) + exp(oy))

Problem: if we merely
implement log-sum-exp as
above, we’ll probably runinto
underflow again b/c:

— Pa=exp(0,)

— Pv=exp(oy)



Log-space Arithmetic

A careful implementation:

1 def log—sum—exp(xq,...,2N): Log-space Addition
> ¢ = max(x1,...,TN) .
— e legS . e, — o) * Suppose you wish to add two
3 Y= & 2un=1 P\In =€ probabilities p, and p,, together
4 return y to get py = P, + Py, yet all in log-
: space (e.g. 04= log(pq))
Why does this work? « To compute compute o4 from o,
ol and o, we must be more careful:
y=log > exp(y)
—l —
& 04 = log-sum-exp(0,, 0,)
N = log(exp(o,) + exp(o
n=1
0 & * Problem: if we merely
= exp(y) = —C Y expl@n) implement’ log-sum-exp as
exp(c) = above, we’ll probably run into

=y = c+ log Z exp(z, — ¢)

n=1

underflow again b/c:
— Pa=exp(0,)
— Py =exp(op)



Forward Algorithm (in log-space)

We can run the forward algorithm in log-space using log-multiplication and
log-addition. The backward algorithm is analogous.

Definitions Assume
log oy (k) £ logp(xy,. .., 2,y = k) Yo = START
1. Initialize
log ap(START) = 0 log ag(k) = —o0, Vk # START

2. Forward Algorithm

fort=1,..., T+ 1:

fork=1,..., K:
for;=1,... K:
0j = logp(xs | ye = k) +logas_1(j) +logp(y: = k | ye—1 = 7)
log a¢(k) = log-sum-exp(o1, ..., 0K)

3. Evaluation log p(x) = log a1 (END)



MBR DECODING



Inference for HMMs

oV
— /hrélnference Problems foran HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations

4. MBR Decoding: Find the lowest loss sequence of
hidden states, given a sequence of observations
(Viterbi decoding is a special case)

43



Minimum Bayes Risk Decoding

* Suppose we given a loss function /(y’, y) and are
asked for a single tagging

* How should we choose just one from our probability
distribution p(y|x)?

* A minimum Bayes risk (MBR) decoder /(x) returns
the variable assignment with minimum expected loss
under the model’s distribution

he (w) — argmin ﬂpre('lCB) [6(:&7 y)]
Yy

argmin Y pe(y | )((§,y)
& Y



Minimum Bayes Risk Decoding

Consider some example loss functions:




Minimum Bayes Risk Decoding

Consider some example loss functions:




TO HMMS AND BEYOND...



Unsupervised Learning for HMMs

Unlike discriminative models p(y|x), generative models p(x,y)
can maximize the likelihood of the data D = {x(), x), ... x(N}}

where we don’t observe any y’s.

This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

We optimize using the Expectation-Maximization algorithm

Since we don’t observe y, we define the marginal probability:

po(x) =Y po(x,y)

yey

The log-likelihood of the data is thus:

N .
£(0) = log Hpg (x(’))

N
= log ) po(x,y)
i=1

yey




HMMs: History

* Markov chains: Andrey Markov (1906)
— Random walks and Brownian motion
« Used in Shannon’s work on information theory (1948)
« Baum-Welsh learning algorithm: late 60’s, early 70’s.
— Used mainly for speech in 60s-70s.

« Late 80’s and 90’s: David Haussler (major player in
learning theory in 80’s) began to use HMMs for
modeling biological sequences

* Mid-late 1990’s: Dayne Freitag/Andrew McCallum

— Freitag thesis with Tom Mitchell on IE from Web
using logic programs, grammar induction, etc.

— McCallum: multinomial Naive Bayes for text
— With McCallum, IE using HMMs on CORA

49

Slide from William Cohen



Higher-order HMMs
* 1t-order HMM (i.e. bigram HMM)

REER R

« 2"d-order HMM (i.e. trlgram HIVHV\)




Higher-order HMMs
* 1t-order HMM (i.e. bigram HMM)

S

HMM (i.e. trlgram HIV\IV\)

Hidden

51



Learning Objectives

Hidden Markov Models
You should be able to...

1. Show that structured prediction problems yield high-computation inference
problems

2.  Define the first order Markov assumption

3.  Draw a Finite State Machine depicting a first order Markov assumption

4. Derive the MLE parameters of an HMM

5. Define the three key problems for an HMM: evaluation, decoding, and

marginal computation

6. Derive a dynamic programming algorithm for computing the marginal
probabilities of an HMM

7.  Interpret the forward-backward algorithm as a message passing algorithm

8. Implement supervised learning for an HMM

9. Implement the forward-backward algorithm for an HMM

10. Implement the Viterbi algorithm for an HMM

11.  Implement a minimum Bayes risk decoder with Hamming loss for an HMM



DIRECTED GRAPHICAL MODELS



Example: CMU Mission Control

9 0.5 Pittsburgh's NPR News Station
ESA

0

>

Pittsburgh's first mission control
center to land at CMU ahead of
2022 lunar rover launch

90.5 WESA | By Kiley Koscinski
2 at 4:44 PM EDT nnn e

Published March 29, 2022 at 4

WE:
Morning Edition
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Bayesian Network

(x,) - p(X1, X2, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
) () p(X3)p(X2| X1)p(X1)



Bayesian Network

Definition:

(x,)
(x) (3 P(Xy,...,X7) =] ] P(X; | parents(Xy))

t=1

* A Bayesian Network is a directed graphical model
* |t consists of a graph G and the conditional probabilities P

* These two parts full specify the distribution:
— Qualitative Specification: G
— Quantitative Specification: P



Qualitative Specification

* Where does the qualitative specification
come from?

— Prior knowledge of causal relationships

— Prior knowledge of modular relationships
— Assessment from experts

— Learning from data (i.e. structure learning)

— We simply prefer a certain architecture (e.g. a
layered graph)



Example: Conditional probability tables (CPTs)
for discrete random variables

0.75

bO

0.33

0.25

b1

0.67

Quantitative Specification

P(a)P(b)P(c|a,b)P(d]c)

P(a,b,c.d) =

a’bo a’b? a'bo a'b?
cO 0.45 1 0.9 0.7
c’ 0.55 0 0.1 0.3
c? c’
0.3 [0.5
07 |05

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Conditional probability density functions (CPDs)
for continuous random variables

P(a,b,c.d) =
A-N(Uy %) B=N(uy, Zp) P(a)P(b)P(c|a,b)P(d|c)
C~N(A+B, X,) )
Q
| N
‘ D~N(Md+c; Zd)
D

© Eric Xing @ CMU, 2006-2011
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Quantitative Specification

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

P(a,b,c.d) =

a® |0.75 b° | 0.33 P(a)P(b)P(c|a,b)P(d|c)

a' [0.25 b’ 0.67

C~N(A+B, X.)

‘ D~N(uq+C, Z4)

© Eric Xing @ CMU, 2006-2011



Observed Variables

* In a graphical model, shaded nodes are
“observed”, i.e. their values are given




Familiar Models as Bayesian
Networks

Question:

Match the model name to
the corresponding Bayesian
Network

1. Logistic Regression
Linear Regression
Bernoulli Naive Bayes
Gaussian Naive Bayes
1D Gaussian

VR W

Answer:




GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES



What Independencies does a Bayes Net Model?

* In order for a Bayesian network to model a probability

distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

T
+ This follows from P(X1,..., Xr) = | [ P(Xy | parents(Xy))

t=1
T

=] P(X¢ | Xy,..., Xiq)
t=1

* But what else does it imply?

Slide from William Cohen



What Independencies does a Bayes Net Model?

Three cases of interest...




What Independencies does a Bayes Net Model?

Three cases of interest...




Proof of
conditional
independence

Whiteboard

(The other two
cases can be
shown just as
easily.)
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The “Burglar Alarm” example

* Your house has a twitchy burglar
HITIOUSE Witeny v & Burglar FEarthquake
alarm that is also sometimes
triggered by earthquakes.

e Earth arguably doesn’t care w
whether your house is currently
Phone Call

being burgled

* While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Slide from William Cohen



The “Burglar Alarm” example

* After you get this phone call,

suppose you learn that there was a @”’”gl‘” Earthqu@
medium-sized earthquake in your
neighborhood. Oh, whew! Probably Alarm

not a burglar after all.

 Earthquake “explains away” the
hypothetical burglar. @one C@

e But then it must not be the case
that

Burglar 1L Earthquake | PhoneCall
even though

Burglar 1. Earthquake



Markov Boundary

Def: the co-parents of a node
are the parents of its children

Def: the Markov boundary of a
node is the set containing the @

node’s parents, children, and @ @ @

co-parents.



Markov Boundary

Def: the co-parents of a node Example: The Markov
are the parents of its children boundary of Xj is

Def: the Markov boundary of a X5 Xgp X5 Xg Xo Xy0}

node is the set containing the @

node’s parents, children, and @ E @

co-parents.
@ @& o ®
CONND G



Markov Boundary

Def: the co-parents of a node Example: The Markov
are the parents of its children boundary of X is

Def: the Markov boundary of a X5 Xgp X5 Xg Xo Xy0}

node is the set containing the @

node’s parents, children, and @ E @

CO-parents.
Parents

Theorem: a node is @ @ X, @

oy 0 . </
conditionally independent of Co-parents

every other node in the graph @ @
given its Markov boundary
Children @

X]Z



D-Separation

Definition #1:
Variables X and Z are d-separated given a set of evidence variables E

(variables that are observed) iff every path from X to Z is “blocked”.

A pathis “blocked” whenever:
1. 3Yonpaths.t.Y€EandYisa“common parent”

O -O@0 -0

2. 3dYonpaths.t.YEEandYisina“cascade”

3. 3Yon paths.t. {Y, descendants(Y)} € EandYisina ‘“v-structure”

O -O-0-O -0

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

79



D-Separation

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E
Definition #2:

Variables X and Z are d-separated given a set of evidence variables E iff there does
not exist a path between X and Z in the undirected moral graph

: keep only X, Z, E and their ancestors
2.  Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
: delete any nodesin E

Example Query: A 1 B|{D, E}

Original: Moral: Undirected:

T O T 0T 0T O mmm
= not d-separated

80



SUPERVISED LEARNING FOR
BAYES NETS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x|0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



Machine Learning




Machine Learning
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Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5|X3)p(X4| X2, X3)
x) () p(X3)p(X2|X1)p(X1)



Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5]X3)p(X4| X2, X3)

x) () p(X3)p(X2| X1)p(X1)



Learning Fully Observed BNs

- (x) p(X1, Xo, X3, X4, X5) =
& p(X5]X3)p(X4| X2, X3)
&) (0 p(X3)p(Xa2| X1)p(X1)

How do we learn these conditional and
marginal distributions for a Bayes Net?

87



Learning Fully Observed BNs

Learning this fully observed
Bayesian Network is
equivalent to learning five

p(X17 X27 X37 X47 X5) —
p(X5|X3)p(X4| X2, X3)

(small [ simple) independent p(X3)p(X2|X1)p(X1)
networks from the same data




Learning Fully Observed BNs

How do we learn these
conditional and marginal "
distributions for a Bayes Net? 0" = arginax 1og p(Xl, XQ, Xg, X4, X5)
0

@ = argznaxlogp(X5|X3,95) + log p(X4| X2, X3, 04)
+ log p(X3]03) + log p(X2| X1, 65)

@ @ + log p(X11601)

07 = argmaxlog p(X1|01)

01
@ @ 65 = argmaxlog p(Xo| X1, 05)

02

05 = argmaxlog p(X3|03)
03

0, = argmaxlog p(X4[ X2, X3, 04)
04

0: = argmaxlog p(X5| X3, 05)

05 89



Example: Tornado Alarms

1. Imagine that
you work at the
911 call center

in Dallas

T 2. Youreceive six

‘ calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you

conclude?

90



Example: Tornado Alarms

Hacking Attack Woke Up Dallas 1. Ima gl ne that
With Emergency Sirens, Officials Say you Wo rk at the
By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017 9 1 1 C a I I C e n t e r
—_— | in Dallas

R 2. Youreceive six
‘ calls informing
you that the
Emergency

Weather Sirens
are going off
3. What do you

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding 7
around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times C O n C u e °

Figure from https://[www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html

o1



Learning Fully Observed BNs

EX : _ITDNMJO AL"Wg
o ot oclos 19 &m“;/;(,@/?
CK / Tw &Mm‘k(‘t = e
Olanis A Bowdi (0) _— "f
Iqu Phon Gk C;:: UniSom (21, -1 63) + AR Duform(21,-,61)
lnl%u
[VL& i Clo%é for

Ao, %) = ;r SCANIA AT
‘é_lo p(£710) ¢ by (4] )
'+/9 O £ {f 19
;\L:"’}‘:,:’LL = agwex /((vL,’\:/og)
s arpx & fog plh ) = HTDM
”E= w}mx é Ro r( UIQ‘.’) H(H=D) /N
X = ‘sz 19 (a“/,f"/“

ek

54,7 d*(Af T4, AR
H (T =¢, H=h)




INFERENCE FOR BAYESIAN
NETWORKS



A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1. How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ~ P(T, H, A, Q)

3. How do we compute marginal probabilities?

P(A) = ...
<:| Can we

4. How do we draw samples from a conditional distribution? use

t,h,a~P(T,H,A|C=¢)
samples
5. How do we compute conditional marginal probabilities? p

P(H|C=c)=... <:'




Gibbs Sampling
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Gibbs Sampling

Question:

How do we draw samples from a conditional distribution?
yw y2) *eey yJ ~ P(Yn yzr *eey yJ I L STRASTRTTERY )

(Approximate) Solution:

— Initialize y,(©), y,(9), ..., y,(°) to arbitrary values
— Fort=1,2,...:

© Y0~y [y, e v, % X, X))
© V.~ p(y, |y, Y3(t): ey Y, Xy Xy 00, X))
° y3(t”) ~ P(y3 I Y1(t+1), yz(tﬂ)’ y4(t)’ ) yJ(t); Xy Xy eeey X) )

yJ(t+1) ~ p(yJ | y1(t+1)) yz(t+1)) cee yJ—1(t+1)) ASTRSTRITERS )

Properties:

— This will eventually yield samples from
p(Yv Yoreees Yy I Ky Xyy eeey X )

— But it might take a long time - just like other Markov Chain Monte Carlo
methods




Gibbs Sampling

Full conditionals
only need to
condition on the
Markov
boundary

* Must be “easy’” to sample from
conditionals

* Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

Inp(x)




Learning Objectives

Bayesian Networks

You should be able to...

1.

W

o

10.
11.

Identify the conditional independence assumptions given by a generative
story or a specification of a joint distribution

Draw a Bayesian network given a set of conditional independence
assumptions

Define the joint distribution specified by a Bayesian network

User domain knowledge to construct a (simple) Bayesian network for a real-
world modeling problem

Depict familiar models as Bayesian networks

Use d-separation to prove the existence of conditional indenpendenciesin a
Bayesian network

Employ a Markov boundary to identify conditional independence assumptions
of a graphical model

Develop a supervised learning algorithm for a Bayesian network

Use samples from a joint distribution to compute marginal probabilities
Sample from the joint distribution specified by a generative story
Implement a Gibbs sampler for a Bayesian network



