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Reminders

• Practice Problems: Exam 2
– Out: Fri, Nov. 4

• Exam 2
– Thu, Nov. 10, 6:30pm – 8:30pm

• Homework 7: Hidden Markov Models
– Out: Fri, Nov. 11
– Due: Mon, Nov. 21 at 11:59pm
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EXAMPLE: FORWARD-BACKWARD 
ON THREE WORDS
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find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
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• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
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v 3 5 3
n 4 5 2
a 0.1 0.2 0.1

v n a
v 1 6 4
n 8 4 0.1
a 0.1 8 0
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Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(STA
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)
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B(a,END)
A(find,v)

A(pref., a)

A(tags,n)
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Viterbi Algorithm: Most Probable Assignment
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• So p(v a n) = (1/Z) * product weight of one path

B(STA
RT,v

)

B (v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v
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Forward-Backward Algorithm: Finds Marginals
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• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n



Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals
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path prefixes
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Forward-Backward Algorithm: Finds Marginals
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b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths
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Forward-Backward Algorithm: Finds Marginals
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total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path 
through a state also 

includes a weight at that 
state.

So α(n)∙β(n) isn’t enough.

The extra weight is the 
opinion of the emission 

probability at this variable.
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total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)
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v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)
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total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide 
by Z=0.5 

to get 
marginal 

probs



X3X2X1

Y2 Y3Y1

26

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm



Forward-Backward Algorithm
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Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)



Forward-Backward Algorithm
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Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

O(K)O(K2T)

Brute force 
algorithm 
would be 

O(KT)



THE VITERBI ALGORITHM
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Inference for HMMs

Whiteboard
– Viterbi algorithm 

(edge weights version)
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Viterbi Algorithm
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Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)



Viterbi Algorithm

34

Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)
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yT+1 = END

1. Initialize
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2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}
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O(K2T)

Brute force 
algorithm 
would be 

O(KT)



Inference in HMMs
What is the computational complexity of 
inference for HMMs?

• The naïve (brute force) computations for 
Evaluation, Decoding, and Marginals take 
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

35



Shortcomings of 
Hidden Markov Models

• HMM models capture dependences between each state and only its 
corresponding observation  
– NLP example: In a sentence segmentation task, each segmental state may depend 

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white 
space, etc.

• Mismatch between learning objective function and prediction objective 
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction 

task, we need the conditional probability P(Y|X)
© Eric Xing @ CMU, 2005-2015 36

Y1 Y2 … … … Yn

X1 X2 … … … Xn
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FORWARD-BACKWARD IN LOG 
SPACE

37



Forward-Backward Algorithm

38

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

Problem:
Implementing F-B as shown 

here could run into 
underflow (i.e.  floating point 

precision issues).

Why? 
Because the algorithm is still 
multiplying O(T) probabilities 
together. Each probability is 
in [0,1] and so their product 

can get very small. 

One solution: 
work in log-space!



Log-space Arithmetic

Log-space Multiplication
• Suppose you wish to multiply 

two probabilities pa and pb
together to get pc = pa pb

• Yet, you want to represent all 
those numbers as the log of 
their value:
– oa = log(pa)
– ob = log(pb)
– oc = log(pc)

• To compute oc from oa and ob
we simply add them: 
oc = oa + ob

= log(pa) + log(pb) 
= log(pa pb) 
= log(pc)

Log-space Addition
• Suppose you wish to add two 

probabilities pa and pb together 
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely 
implement log-sum-exp as 
above, we’ll probably run into 
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

39



Log-space Arithmetic

Log-space Addition
• Suppose you wish to add two 

probabilities pa and pb together 
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely 
implement log-sum-exp as 
above, we’ll probably run into 
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

40

Why does this work?

y = log
N∑

n=1

exp(xn)

⇒ exp(y) =
N∑

n=1

exp(xn)

⇒ exp(y) =
exp(c)
exp(c)

N∑

n=1

exp(xn)

⇒ exp(y) = exp(c)
N∑

n=1

exp(xn − c)

⇒y = c+ log
N∑

n=1

exp(xn − c)

A careful implementation: 

1 def log−sum−exp(x1, . . . , xN):
2 c = max(x1, . . . , xN )

3 y = c+ log
∑N

n=1
exp(xn − c)

4 return y



Forward Algorithm (in log-space)
We can run the forward algorithm in log-space using log-multiplication and 
log-addition. The backward algorithm is analogous.

41

Definitions
logαt(k) ! log p(x1, . . . , xt, yt = k)

Assume
y0 = START

1. Initialize

logα0(START) = 0 logα0(k) = −∞, ∀k $= START

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
for j = 1, . . . ,K:
oj = log p(xt | yt = k) + logαt−1(j) + log p(yt = k | yt−1 = j)

logαt(k) = log-sum-exp(o1, . . . , oK)

3. Evaluation log p(x) = logαT+1(END)



MBR DECODING

42



Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given 

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of 

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a 

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of 

hidden states, given a sequence of observations 
(Viterbi decoding is a special case)

43
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Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are 

asked for a single tagging
• How should we choose just one from our probability 

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns 

the variable assignment with minimum expected loss 
under the model’s distribution

44

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The 0-1 loss function returns 0 only if the two assignments 
are identical and 1 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

45

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



The Hamming loss corresponds to accuracy and returns the number 
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable 
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

46

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)



TO HMMS AND BEYOND…

47



Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y) 

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)} 
where we don’t observe any y’s. 

• This unsupervised learning setting can be achieved by finding 
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm

48

Beyond the scope of 

today’s lecture!



HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler  (major player in 

learning theory in 80’s) began to use HMMs for 
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web 

using logic programs, grammar induction, etc.
– McCallum:  multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

49
Slide from William Cohen



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

50

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>



Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

51

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden 
States, y

Observa
-tions, x



Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference 

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and 

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal 

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM
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DIRECTED GRAPHICAL MODELS
Bayesian Networks

54



Example: CMU Mission Control
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Bayesian Network

60

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5



Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

61

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))



Qualitative Specification
• Where does the qualitative specification 

come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a 

layered graph) 
– …

© Eric Xing @ CMU, 2006-2011 62



a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

63© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification

64© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables



A B

C

P(a,b,c.d) = 
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

65© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs 
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67



Example:

Observed Variables

• In a graphical model, shaded nodes are 
“observed”, i.e. their values are given

66

X1

X3X2

X4 X5



Familiar Models as Bayesian 
Networks

67

Question:
Match the model name to 
the corresponding Bayesian 
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian 

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

μ σ2

X

A B

C D

E F



GRAPHICAL MODELS:
DETERMINING CONDITIONAL 
INDEPENDENCIES



What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability 
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants 
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

Slide from William Cohen

P (X1, . . . , XT ) =
T∏

t=1

P (Xt | parents(Xt))

=
T∏

t=1

P (Xt | X1, . . . , Xt−1)



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

71

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY



Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

72

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y 
decouples X and Z

Knowing Y 
couples X and Z

Three cases of interest…



Whiteboard

(The other two 
cases can be 
shown just as 
easily.)
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Common Parent

Y

X Z

X �� Z | Y

Proof of 
conditional 
independence



The “Burglar Alarm” example
• Your house has a twitchy burglar 

alarm that is also sometimes 
triggered by earthquakes.

• Earth arguably doesn’t care 
whether your house is currently 
being burgled

• While you are on vacation, one of 
your neighbors calls and tells you 
your home’s burglar alarm is 
ringing.  Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?  

Burglar �� Earthquake | PhoneCall



The “Burglar Alarm” example
• After you get this phone call, 

suppose you learn that there was a 
medium-sized earthquake in your 
neighborhood. Oh, whew! Probably 
not a burglar after all.

• Earthquake “explains away” the 
hypothetical burglar.

• But then it must not be the case 
that 

even though

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Burglar �� Earthquake | PhoneCall

Burglar �� Earthquake



Markov Boundary

76

Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Markov Boundary
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Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
boundary of X6 is 
{X3, X4, X5, X8, X9, X10}



Markov Boundary
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Def: the Markov boundary of a 
node is the set containing the 
node’s parents, children, and 
co-parents. 

Def: the co-parents of a node 
are the parents of its children

Theorem: a node is 
conditionally independent of 
every other node in the graph 
given its Markov boundary

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov 
boundary of X6 is 
{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents



D-Separation
Definition #1: 
Variables X and Z are d-separated given a set of evidence variables E 
(variables that are observed) iff every path from X to Z is “blocked”.

A path is “blocked” whenever:
1. ∃Y on path s.t. Y ∈ E and Y is a “common parent”

2. ∃Y on path s.t. Y ∈ E and Y is in a “cascade”

3. ∃Y on path s.t. {Y, descendants(Y)}  ∉ E and Y is in a “v-structure”

79

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …



D-Separation

Definition #2: 
Variables X and Z are d-separated given a set of evidence variables E iff there does 
not exist a path between X and Z in the undirected ancestral moral graph with E 
removed.
1. Ancestral graph: keep only X, Z, E and their ancestors
2. Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
4. Givens Removed: delete any nodes in E

80

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

⇒A and B connected
⇒ not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:
Example Query: A ⫫ B | {D, E}



SUPERVISED LEARNING FOR 
BAYES NETS

81



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE

82



Machine Learning

83

The data inspires 
the structures 

we want to 
predict It also tells us 

what to optimize

Our model
defines a score 

for each structure

Learning tunes the 
parameters of the 

model

Inference finds 
{best structure, marginals, 

partition function} for a 
new observation

Domain 
Knowledge

Mathematical 
Modeling

OptimizationCombinatorial 
Optimization

ML

(Inference is usually 
called as a subroutine 

in learning)



Machine Learning
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Data
Model

Learning

Inference

(Inference is usually 
called as a subroutine 

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5



Learning Fully Observed BNs
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X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs
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X1

X3X2

X4 X5



p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and 
marginal distributions for a Bayes Net?
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X1

X3X2

X4 X5



Learning Fully Observed BNs

88

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed 
Bayesian Network is 
equivalent to learning five 
(small / simple) independent 
networks from the same data



Learning Fully Observed BNs
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X1

X3X2

X4 X5

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax
✓1

log p(X1|✓1)

✓⇤2 = argmax
✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax
✓3

log p(X3|✓3)

✓⇤4 = argmax
✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax
✓5

log p(X5|X3, ✓5)

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these 
conditional and marginal

distributions for a Bayes Net?



Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?

90



Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?

91
Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Learning Fully Observed BNs
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INFERENCE FOR BAYESIAN 
NETWORKS

93



A Few Problems for Bayes Nets
Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

94

Can we 
use 

samples
?



Gibbs Sampling
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370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2 )

x(t)
x(t+1)



Gibbs Sampling
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x2
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1 )

x(t)
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Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

x(t)

x(t+3)

x(t+4)



Gibbs Sampling
Question:
How do we draw samples from a conditional distribution? 
y1, y2, …, yJ ∼ p(y1, y2, …, yJ | x1, x2, …, xJ )

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1)∼ p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ )

• y2
(t+1)∼ p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ )
• y3

(t+1)∼ p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ )
• …
• yJ

(t+1)∼ p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ )

Properties:
– This will eventually yield samples from 

p(y1, y2, …, yJ | x1, x2, …, xJ )
– But it might take a long time -- just like other Markov Chain Monte Carlo 

methods
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Gibbs Sampling

Full conditionals 
only need to 
condition on the 
Markov 
boundary

99

• Must be “easy” to sample from 
conditionals

• Many conditionals are log-concave 
and are amenable to adaptive 
rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11



Learning Objectives
Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative 

story or a specification of a joint distribution
2. Draw a Bayesian network given a set of conditional independence 

assumptions
3. Define the joint distribution specified by a Bayesian network
4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem
5. Depict familiar models as Bayesian networks
6. Use d-separation to prove the existence of conditional indenpendencies in a 

Bayesian network
7. Employ a Markov boundary to identify conditional independence assumptions 

of a graphical model
8. Develop a supervised learning algorithm for a Bayesian network
9. Use samples from a joint distribution to compute marginal probabilities
10. Sample from the joint distribution specified by a generative story
11. Implement a Gibbs sampler for a Bayesian network
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