
HMMs
+

Bayesian Networks

1

10-301/601 Introduction to Machine Learning

Matt Gormley
Lecture 20

Nov. 10, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Practice Problems: Exam 2
– Out: Fri, Nov. 4

• Exam 2
– Thu, Nov. 10, 6:30pm – 8:30pm

• Homework 7: Hidden Markov Models
– Out: Fri, Nov. 11
– Due: Mon, Nov. 21 at 11:59pm

2

EXAMPLE: FORWARD-BACKWARD
ON THREE WORDS

6

X3X2X1

Y2 Y3Y1

7

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Forward-Backward Algorithm

8

Y2 Y3Y1

X3X2X1
find preferred tags

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

9

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm

10

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Y2 Y3Y1

X3X2X1
find preferred tags

11

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

12

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm

Y2 Y3Y1

X3X2X1
find preferred tags

13

v

n

a

v

n

a

v

n

a

START END

• Let’s show the possible values for each variable
• One possible assignment
• And what the 7 transition / emission factors think of it …

Forward-Backward Algorithm
fi
nd

p
re
f.

ta
g
s

…

v 3 5 3
n 4 5 2
a 0.1 0.2 0.1

v n a
v 1 6 4
n 8 4 0.1
a 0.1 8 0

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

14

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product of 7 numbers
• Numbers associated with edges and nodes of path
• Most probable assignment = path with highest product

B(STA
RT,v

)

B(v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Viterbi Algorithm: Most Probable Assignment

15

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path

B(STA
RT,v

)

B (v,a)

B(a,n)

B(a,END)
A(find,v)

A(pref., a)

A(tags,n)

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

16

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = a)

= (1/Z) * total weight of all paths through a

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

17

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

18

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = v)

= (1/Z) * total weight of all paths through v

Y2 Y3Y1

X3X2X1
find preferred tags

Forward-Backward Algorithm: Finds Marginals

19

v

n

a

v

n

a

v

n

a

START END

• So p(v a n) = (1/Z) * product weight of one path
• Marginal probability p(Y2 = n)

= (1/Z) * total weight of all paths through n

Y2 Y3Y1

X3X2X1
find preferred tags

α2(n) = total weight of these
path prefixes

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

20

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

= total weight of these
path suffixes

b2(n)

(found by dynamic programming: matrix-vector products)

Forward-Backward Algorithm: Finds Marginals

21

v

n

a

v

n

a

v

n

a

START END

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals

22

b2(n)
(a + b + c) (x + y + z)

Product gives ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

23

total weight of all paths through
= × ×

n

A(pref., n)

α2(n) b2(n)

α2(n) A(pref., n) b2(n)

“belief that Y2 = n”

Oops! The weight of a path
through a state also

includes a weight at that
state.

So α(n)∙β(n) isn’t enough.

The extra weight is the
opinion of the emission

probability at this variable.

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

24

total weight of all paths through
= × ×

v

α2(v) A(pref., v) b2(v)

n

v

“belief that Y2 = n”
α2(v) b2(v)

“belief that Y2 = v”

A(pref., v)

Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

START END

Forward-Backward Algorithm: Finds Marginals

25

total weight of all paths through
= × ×

a

α2(a) A(pref., a) b2(a)

n

v

“belief that Y2 = n”
α2(a) b2(a)

“belief that Y2 = v”

A(pref., a)

a “belief that Y2 = a”

sum = Z
(total weight
of all paths)

v 0.1
n 0
a 0.4

v 0.2
n 0
a 0.8

divide
by Z=0.5

to get
marginal

probs

X3X2X1

Y2 Y3Y1

26

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Forward-Backward Algorithm

Forward-Backward Algorithm

28

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

Forward-Backward Algorithm

29

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

O(K)O(K2T)

Brute force
algorithm
would be

O(KT)

THE VITERBI ALGORITHM

30

Inference for HMMs

Whiteboard
– Viterbi algorithm

(edge weights version)

31

Viterbi Algorithm

33

Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)

Viterbi Algorithm

34

Definitions
ωt(k) ! max

y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

bt(k) ! argmax
y1,...,yt−1

p(x1, . . . , xt, y1, . . . , yt−1, yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

ω0(START) = 1 ω0(k) = 0, ∀k "= START

2. Viterbi Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
ωt(k) = max

j∈{1,...,K}
p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

bt(k) = argmax
j∈{1,...,K}

p(xt | yt = k)ωt−1(j)p(yt = k | yt−1 = j)

3. Compute Most Probable Assignment

ŷT = bT+1(END)

for t = T, . . . , 1 :

ŷt = bt+1(ŷt+1)

O(K2T)

Brute force
algorithm
would be

O(KT)

Inference in HMMs
What is the computational complexity of
inference for HMMs?

• The naïve (brute force) computations for
Evaluation, Decoding, and Marginals take
exponential time, O(KT)

• The forward-backward algorithm and Viterbi
algorithm run in polynomial time, O(T*K2)
– Thanks to dynamic programming!

35

Shortcomings of
Hidden Markov Models

• HMM models capture dependences between each state and only its
corresponding observation
– NLP example: In a sentence segmentation task, each segmental state may depend

not just on a single word (and the adjacent segmental stages), but also on the (non-
local) features of the whole line such as line length, indentation, amount of white
space, etc.

• Mismatch between learning objective function and prediction objective
function
– HMM learns a joint distribution of states and observations P(Y, X), but in a prediction

task, we need the conditional probability P(Y|X)
© Eric Xing @ CMU, 2005-2015 36

Y1 Y2 … … … Yn

X1 X2 … … … Xn

START

FORWARD-BACKWARD IN LOG
SPACE

37

Forward-Backward Algorithm

38

Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

Problem:
Implementing F-B as shown

here could run into
underflow (i.e. floating point

precision issues).

Why?
Because the algorithm is still
multiplying O(T) probabilities
together. Each probability is
in [0,1] and so their product

can get very small.

One solution:
work in log-space!

Log-space Arithmetic

Log-space Multiplication
• Suppose you wish to multiply

two probabilities pa and pb
together to get pc = pa pb

• Yet, you want to represent all
those numbers as the log of
their value:
– oa = log(pa)
– ob = log(pb)
– oc = log(pc)

• To compute oc from oa and ob
we simply add them:
oc = oa + ob

= log(pa) + log(pb)
= log(pa pb)
= log(pc)

Log-space Addition
• Suppose you wish to add two

probabilities pa and pb together
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely
implement log-sum-exp as
above, we’ll probably run into
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

39

Log-space Arithmetic

Log-space Addition
• Suppose you wish to add two

probabilities pa and pb together
to get pd = pa + pb, yet all in log-
space (e.g. od= log(pd))

• To compute compute od from oa
and ob we must be more careful:

od = log-sum-exp(oa, ob)
= log(exp(oa) + exp(ob))

• Problem: if we merely
implement log-sum-exp as
above, we’ll probably run into
underflow again b/c:
– pa = exp(oa)
– pb = exp(ob)

40

Why does this work?

y = log
N∑

n=1

exp(xn)

⇒ exp(y) =
N∑

n=1

exp(xn)

⇒ exp(y) =
exp(c)
exp(c)

N∑

n=1

exp(xn)

⇒ exp(y) = exp(c)
N∑

n=1

exp(xn − c)

⇒y = c+ log
N∑

n=1

exp(xn − c)

A careful implementation:

1 def log−sum−exp(x1, . . . , xN):
2 c = max(x1, . . . , xN)

3 y = c+ log
∑N

n=1
exp(xn − c)

4 return y

Forward Algorithm (in log-space)
We can run the forward algorithm in log-space using log-multiplication and
log-addition. The backward algorithm is analogous.

41

Definitions
logαt(k) ! log p(x1, . . . , xt, yt = k)

Assume
y0 = START

1. Initialize

logα0(START) = 0 logα0(k) = −∞, ∀k $= START

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:
for j = 1, . . . ,K:
oj = log p(xt | yt = k) + logαt−1(j) + log p(yt = k | yt−1 = j)

logαt(k) = log-sum-exp(o1, . . . , oK)

3. Evaluation log p(x) = logαT+1(END)

MBR DECODING

42

Inference for HMMs

– Three Inference Problems for an HMM
1. Evaluation: Compute the probability of a given

sequence of observations
2. Viterbi Decoding: Find the most-likely sequence of

hidden states, given a sequence of observations
3. Marginals: Compute the marginal distribution for a

hidden state, given a sequence of observations
4. MBR Decoding: Find the lowest loss sequence of

hidden states, given a sequence of observations
(Viterbi decoding is a special case)

43

Four

Minimum Bayes Risk Decoding
• Suppose we given a loss function l(y’, y) and are

asked for a single tagging
• How should we choose just one from our probability

distribution p(y|x)?
• A minimum Bayes risk (MBR) decoder h(x) returns

the variable assignment with minimum expected loss
under the model’s distribution

44

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The 0-1 loss function returns 0 only if the two assignments
are identical and 1 otherwise:

The MBR decoder is:

which is exactly the Viterbi decoding problem!

Minimum Bayes Risk Decoding

Consider some example loss functions:

45

`(ŷ,y) = 1� I(ŷ,y)

h✓(x) = argmin
ŷ

X

y

p✓(y | x)(1� I(ŷ,y))

= argmax
ŷ

p✓(ŷ | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

The Hamming loss corresponds to accuracy and returns the number
of incorrect variable assignments:

The MBR decoder is:

This decomposes across variables and requires the variable
marginals.

Minimum Bayes Risk Decoding

Consider some example loss functions:

46

`(ŷ,y) =
VX

i=1

(1� I(ŷi, yi))

ŷi = h✓(x)i = argmax
ŷi

p✓(ŷi | x)

h✓(x) = argmin
ŷ

Ey⇠p✓(·|x)[`(ŷ,y)]

= argmin
ŷ

X

y

p✓(y | x)`(ŷ,y)

TO HMMS AND BEYOND…

47

Unsupervised Learning for HMMs
• Unlike discriminative models p(y|x), generative models p(x,y)

can maximize the likelihood of the data D = {x(1), x(2), …, x(N)}
where we don’t observe any y’s.

• This unsupervised learning setting can be achieved by finding
parameters that maximize the marginal likelihood

• We optimize using the Expectation-Maximization algorithm

48

Beyond the scope of

today’s lecture!

HMMs: History
• Markov chains: Andrey Markov (1906)

– Random walks and Brownian motion
• Used in Shannon’s work on information theory (1948)
• Baum-Welsh learning algorithm: late 60’s, early 70’s.

– Used mainly for speech in 60s-70s.
• Late 80’s and 90’s: David Haussler (major player in

learning theory in 80’s) began to use HMMs for
modeling biological sequences

• Mid-late 1990’s: Dayne Freitag/Andrew McCallum
– Freitag thesis with Tom Mitchell on IE from Web

using logic programs, grammar induction, etc.
– McCallum: multinomial Naïve Bayes for text
– With McCallum, IE using HMMs on CORA

• …

49
Slide from William Cohen

Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

50

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Higher-order HMMs
• 1st-order HMM (i.e. bigram HMM)

• 2nd-order HMM (i.e. trigram HMM)

• 3rd-order HMM

51

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Y1 Y2 Y3 Y4 Y5

X1 X2 X3 X4 X5

<START>

Hidden
States, y

Observa
-tions, x

Learning Objectives
Hidden Markov Models

You should be able to…
1. Show that structured prediction problems yield high-computation inference

problems
2. Define the first order Markov assumption
3. Draw a Finite State Machine depicting a first order Markov assumption
4. Derive the MLE parameters of an HMM
5. Define the three key problems for an HMM: evaluation, decoding, and

marginal computation
6. Derive a dynamic programming algorithm for computing the marginal

probabilities of an HMM
7. Interpret the forward-backward algorithm as a message passing algorithm
8. Implement supervised learning for an HMM
9. Implement the forward-backward algorithm for an HMM
10. Implement the Viterbi algorithm for an HMM
11. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

52

DIRECTED GRAPHICAL MODELS
Bayesian Networks

54

Example: CMU Mission Control

55

Bayesian Network

60

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X3X2

X4 X5

Bayesian Network

• A Bayesian Network is a directed graphical model
• It consists of a graph G and the conditional probabilities P
• These two parts full specify the distribution:

– Qualitative Specification: G
– Quantitative Specification: P

61

X1

X3X2

X4 X5

Definition:

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

Qualitative Specification
• Where does the qualitative specification

come from?

– Prior knowledge of causal relationships
– Prior knowledge of modular relationships
– Assessment from experts
– Learning from data (i.e. structure learning)
– We simply prefer a certain architecture (e.g. a

layered graph)
– …

© Eric Xing @ CMU, 2006-2011 62

a0 0.75
a1 0.25

b0 0.33
b1 0.67

a0b0 a0b1 a1b0 a1b1

c0 0.45 1 0.9 0.7
c1 0.55 0 0.1 0.3

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D
c0 c1

d0 0.3 0.5
d1 07 0.5

Quantitative Specification

63© Eric Xing @ CMU, 2006-2011

Example: Conditional probability tables (CPTs)
for discrete random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

A~N(μa, Σa) B~N(μb, Σb)

C~N(A+B, Σc)

D~N(μd+C, Σd)
D

C

P(
D|

 C
)

Quantitative Specification

64© Eric Xing @ CMU, 2006-2011

Example: Conditional probability density functions (CPDs)
for continuous random variables

A B

C

P(a,b,c.d) =
P(a)P(b)P(c|a,b)P(d|c)

D

C~N(A+B, Σc)

D~N(μd+C, Σd)

Quantitative Specification

65© Eric Xing @ CMU, 2006-2011

Example: Combination of CPTs and CPDs
for a mix of discrete and continuous variables

a0 0.75
a1 0.25

b0 0.33
b1 0.67

Example:

Observed Variables

• In a graphical model, shaded nodes are
“observed”, i.e. their values are given

66

X1

X3X2

X4 X5

Familiar Models as Bayesian
Networks

67

Question:
Match the model name to
the corresponding Bayesian
Network
1. Logistic Regression
2. Linear Regression
3. Bernoulli Naïve Bayes
4. Gaussian Naïve Bayes
5. 1D Gaussian

Answer:
Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

Y

XMX1 X2 …

X

μ σ2

X

A B

C D

E F

GRAPHICAL MODELS:
DETERMINING CONDITIONAL
INDEPENDENCIES

What Independencies does a Bayes Net Model?

• In order for a Bayesian network to model a probability
distribution, the following must be true:

Each variable is conditionally independent of all its non-descendants
in the graph given the value of all its parents.

• This follows from

• But what else does it imply?

Slide from William Cohen

P (X1, . . . , XT) =
T∏

t=1

P (Xt | parents(Xt))

=
T∏

t=1

P (Xt | X1, . . . , Xt−1)

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

71

Three cases of interest…

Z

Y

X

Y

X Z

ZX

YY

Common Parent V-StructureCascade

What Independencies does a Bayes Net Model?

72

Z

Y

X

Y

X Z

ZX

YY

X �� Z | Y X �� Z | Y X ��� Z | Y

Knowing Y
decouples X and Z

Knowing Y
couples X and Z

Three cases of interest…

Whiteboard

(The other two
cases can be
shown just as
easily.)

73

Common Parent

Y

X Z

X �� Z | Y

Proof of
conditional
independence

The “Burglar Alarm” example
• Your house has a twitchy burglar

alarm that is also sometimes
triggered by earthquakes.

• Earth arguably doesn’t care
whether your house is currently
being burgled

• While you are on vacation, one of
your neighbors calls and tells you
your home’s burglar alarm is
ringing. Uh oh!

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Quiz: True or False?

Burglar �� Earthquake | PhoneCall

The “Burglar Alarm” example
• After you get this phone call,

suppose you learn that there was a
medium-sized earthquake in your
neighborhood. Oh, whew! Probably
not a burglar after all.

• Earthquake “explains away” the
hypothetical burglar.

• But then it must not be the case
that

even though

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Burglar �� Earthquake | PhoneCall

Burglar �� Earthquake

Markov Boundary

76

Def: the Markov boundary of a
node is the set containing the
node’s parents, children, and
co-parents.

Def: the co-parents of a node
are the parents of its children

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Markov Boundary

77

Def: the Markov boundary of a
node is the set containing the
node’s parents, children, and
co-parents.

Def: the co-parents of a node
are the parents of its children

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov
boundary of X6 is
{X3, X4, X5, X8, X9, X10}

Markov Boundary

78

Def: the Markov boundary of a
node is the set containing the
node’s parents, children, and
co-parents.

Def: the co-parents of a node
are the parents of its children

Theorem: a node is
conditionally independent of
every other node in the graph
given its Markov boundary

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Example: The Markov
boundary of X6 is
{X3, X4, X5, X8, X9, X10}

ParentsChildren

ParentsCo-parents

ParentsParents

D-Separation
Definition #1:
Variables X and Z are d-separated given a set of evidence variables E
(variables that are observed) iff every path from X to Z is “blocked”.

A path is “blocked” whenever:
1. ∃Y on path s.t. Y ∈ E and Y is a “common parent”

2. ∃Y on path s.t. Y ∈ E and Y is in a “cascade”

3. ∃Y on path s.t. {Y, descendants(Y)} ∉ E and Y is in a “v-structure”

79

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

YX Z… …

YX Z… …

YX Z… …

D-Separation

Definition #2:
Variables X and Z are d-separated given a set of evidence variables E iff there does
not exist a path between X and Z in the undirected ancestral moral graph with E
removed.
1. Ancestral graph: keep only X, Z, E and their ancestors
2. Moral graph: add undirected edge between all pairs of each node’s parents
3. Undirected graph: convert all directed edges to undirected
4. Givens Removed: delete any nodes in E

80

If variables X and Z are d-separated given a set of variables E
Then X and Z are conditionally independent given the set E

⇒A and B connected
⇒ not d-separated

A B

C

D E

F

Original:

A B

C

D E

Ancestral:

A B

C

D E

Moral:

A B

C

D E

Undirected:

A B

C

Givens Removed:
Example Query: A ⫫ B | {D, E}

SUPERVISED LEARNING FOR
BAYES NETS

81

Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down
at θMLE

82

Machine Learning

83

The data inspires
the structures

we want to
predict It also tells us

what to optimize

Our model
defines a score

for each structure

Learning tunes the
parameters of the

model

Inference finds
{best structure, marginals,

partition function} for a
new observation

Domain
Knowledge

Mathematical
Modeling

OptimizationCombinatorial
Optimization

ML

(Inference is usually
called as a subroutine

in learning)

Machine Learning

84

Data
Model

Learning

Inference

(Inference is usually
called as a subroutine

in learning)

3 Alice saw Bob on a hill with a telesco
pe

Alice
saw Bob

on a hill with
a telescop

e

4 time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

time flies like an arrow

2

Objective

X1

X3X2

X4 X5

Learning Fully Observed BNs

85

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

86

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

Learning Fully Observed BNs

How do we learn these conditional and
marginal distributions for a Bayes Net?

87

X1

X3X2

X4 X5

Learning Fully Observed BNs

88

X1

X3X2

X4 X5

p(X1, X2, X3, X4, X5) =

p(X5|X3)p(X4|X2, X3)

p(X3)p(X2|X1)p(X1)

X1

X2

X1

X3

X3X2

X4

X3

X5

Learning this fully observed
Bayesian Network is
equivalent to learning five
(small / simple) independent
networks from the same data

Learning Fully Observed BNs

89

X1

X3X2

X4 X5

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

✓⇤1 = argmax
✓1

log p(X1|✓1)

✓⇤2 = argmax
✓2

log p(X2|X1, ✓2)

✓⇤3 = argmax
✓3

log p(X3|✓3)

✓⇤4 = argmax
✓4

log p(X4|X2, X3, ✓4)

✓⇤5 = argmax
✓5

log p(X5|X3, ✓5)

✓⇤ = argmax
✓

log p(X1, X2, X3, X4, X5)

= argmax
✓

log p(X5|X3, ✓5) + log p(X4|X2, X3, ✓4)

+ log p(X3|✓3) + log p(X2|X1, ✓2)

+ log p(X1|✓1)

How do we learn these
conditional and marginal

distributions for a Bayes Net?

Example: Tornado Alarms
1. Imagine that

you work at the
911 call center
in Dallas

2. You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you
conclude?

90

Example: Tornado Alarms
1. Imagine that

you work at the
911 call center
in Dallas

2. You receive six
calls informing
you that the
Emergency
Weather Sirens
are going off

3. What do you
conclude?

91
Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html

Learning Fully Observed BNs

92

INFERENCE FOR BAYESIAN
NETWORKS

93

A Few Problems for Bayes Nets
Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution?
t,h,a∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

94

Can we
use

samples
?

Gibbs Sampling

95

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

p(x1|x(t)
2)

x(t)
x(t+1)

Gibbs Sampling

96

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1)

x(t)

Gibbs Sampling

97

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2)

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

x(t)

x(t+3)

x(t+4)

Gibbs Sampling
Question:
How do we draw samples from a conditional distribution?
y1, y2, …, yJ ∼ p(y1, y2, …, yJ | x1, x2, …, xJ)

(Approximate) Solution:
– Initialize y1

(0), y2
(0), …, yJ

(0) to arbitrary values
– For t = 1, 2, …:

• y1
(t+1)∼ p(y1 | y2

(t), …, yJ
(t), x1, x2, …, xJ)

• y2
(t+1)∼ p(y2 | y1

(t+1), y3
(t), …, yJ

(t), x1, x2, …, xJ)
• y3

(t+1)∼ p(y3 | y1
(t+1), y2

(t+1), y4
(t), …, yJ

(t), x1, x2, …, xJ)
• …
• yJ

(t+1)∼ p(yJ | y1
(t+1), y2

(t+1), …, yJ-1
(t+1), x1, x2, …, xJ)

Properties:
– This will eventually yield samples from

p(y1, y2, …, yJ | x1, x2, …, xJ)
– But it might take a long time -- just like other Markov Chain Monte Carlo

methods

98

Gibbs Sampling

Full conditionals
only need to
condition on the
Markov
boundary

99

• Must be “easy” to sample from
conditionals

• Many conditionals are log-concave
and are amenable to adaptive
rejection sampling

X1

X4X3

X6 X7

X9

X12

X5

X2

X8

X10

X13

X11

Learning Objectives
Bayesian Networks

You should be able to…
1. Identify the conditional independence assumptions given by a generative

story or a specification of a joint distribution
2. Draw a Bayesian network given a set of conditional independence

assumptions
3. Define the joint distribution specified by a Bayesian network
4. User domain knowledge to construct a (simple) Bayesian network for a real-

world modeling problem
5. Depict familiar models as Bayesian networks
6. Use d-separation to prove the existence of conditional indenpendencies in a

Bayesian network
7. Employ a Markov boundary to identify conditional independence assumptions

of a graphical model
8. Develop a supervised learning algorithm for a Bayesian network
9. Use samples from a joint distribution to compute marginal probabilities
10. Sample from the joint distribution specified by a generative story
11. Implement a Gibbs sampler for a Bayesian network

100

