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Reminders

• Practice Problems: Exam 2
– Out: Fri, Nov. 4

• Exam 2
– Thu, Nov. 10, 6:30pm – 8:30pm

• Homework 7: Hidden Markov Models
– Out: Fri, Nov. 11
– Due: Mon, Nov. 21 at 11:59pm
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SUPERVISED LEARNING FOR 
HMMS
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Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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MLE of Categorical Distribution
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HMM Parameters:
Hidden Markov Model (v1)
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HMM Parameters:
Hidden Markov Model (v1)
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02 .03
C 0 0 0

O S C
O .9 .08.02
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C .9 0 .1

1m
in
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in

3m
in

…
O .1 .2 .3
S .01 .02 .03
C 0 0 0
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S .1
C .1

Joint Distribution (probability mass function):

p(x,y) = p(y1, C)

(

T
∏

t=1

p(xt | yt, A)

)(

T
∏

t=2

p(yt | yt−1, B)

)

= Cy1

(

T
∏

t=1

Ayt,xt

)(

T
∏

t=2

Byt−1,yt

)



Supervised Learning for HMM (v1)
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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Yt Yt+1

Xt

Yt

Data: D = {(x(i),y(i))}Ni=1 where x = [x1, . . . , xT ]T and y = [y1, . . . , yT ]T

Likelihood:

!(A,B,C) =
N
∑

i=1

log p(x(i),y(i) | A,B,C)

=
N
∑

i=1








log p(y(i)1 | C)
︸ ︷︷ ︸

initial

+








T
∑

t=2

log p(y(i)t | y(i)t−1,B)

︸ ︷︷ ︸

transition








+








T
∑

t=1

log p(x(i)
t | y(i)t ,A)

︸ ︷︷ ︸

emission















MLE:

Â, B̂, Ĉ = argmax
A,B,C

!(A,B,C)

⇒ Ĉ = argmax
C

N
∑

i=1

log p(y(i)1 | C)

B̂ = argmax
B

N
∑

i=1

T
∑

t=2

log p(y(i)t | y(i)t−1,B)

Â = argmax
A

N
∑

i=1

T
∑

t=1

log p(x(i)
t | y(i)t ,A)

We can solve the above in closed form, which yields...

Ĉk =
#(y(i)1 = k)

N
, ∀k

B̂j,k =
#(y(i)t = k and y

(i)
t−1 = j)

#(y(i)t−1 = j)
, ∀j, k

Âj,k =
#(x(i)

t = k and y
(i)
t = j)

#(y(i)t = j)
, ∀j, k



HMM (v2):

HMM (v1):

HMM (two ways)
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X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5
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HMM Parameters:

Hidden Markov Model (v2)
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Emission matrix, �, where P (Xk = w|Yk = t) = At,w, �k

Transition matrix, ", where P (Yk = t|Yk�1 = s) = Bs,t, �k

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

O S C Start

O .9 .08 .02 0
S .2 .7 .1 0
C .9 0 .1 0
Start 0.8 0.1 0.1 0

ti
m
e

fl
ie
s

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

ti
m
e

fl
ie
s

lik
e

…

v 3 5 3
n 4 5 2
p 0.1 0.1 3
d 0.1 0.2 0.1

O S C Start

O .9 .08 .02 0
S .2 .7 .1 0
C .9 0 .1 0
Start 0.8 0.1 0.1 0

For notational 
convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



HMM Parameters:

Assumption:
Generative Story: 

Hidden Markov Model (v2)
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Y1 Y2 Y3 Y4 Y5Y0

y0 = START
For notational 

convenience, we fold the 
initial probabilities C into 
the transition matrix B by 

our assumption.



Hidden Markov Model (v2)

17X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5Y0

Joint Distribution (probability mass function):

y0 = START



Supervised Learning for HMM (v2)
Learning an 
HMM 
decomposes 
into solving two 
(independent) 
Mixture Models
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Yt Yt+1

Xt

Yt

Data: D = {(x(i),y(i))}Ni=1 where x = [x1, . . . , xT ]T and y = [y1, . . . , yT ]T

We assume y(i)0 = START for all i

Likelihood:

!(A,B) =
N
∑

i=1

log p(x(i),y(i) | A,B)

=
N
∑

i=1





T
∑

t=1

log p(y(i)t | y(i)t−1,B)
︸ ︷︷ ︸

transition

+ log p(x(i)
t | y(i)t ,A)

︸ ︷︷ ︸

emission





MLE:

Â, B̂ = argmax
A,B,C

!(A,B)

⇒ B̂ = argmax
B

N
∑

i=1

T
∑

t=1

log p(y(i)t | y(i)t−1,B)

Â = argmax
A

N
∑

i=1

T
∑

t=1

log p(x(i)
t | y(i)t ,A)

We can solve the above in closed form, which yields...

B̂j,k =
#(y(i)t = k and y

(i)
t−1 = j)

#(y(i)t−1 = j)
, ∀j, k

Âj,k =
#(x(i)

t = k and y
(i)
t = j)

#(y(i)t = j)
, ∀j, k



BACKGROUND: MESSAGE PASSING
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Great Ideas in ML: Message Passing

3 
behind 
you

2 
behind 
you

1 
behind 
you

4 
behind 
you

5 
behind 
you

1 
before
you

2 
before
you

there's
1 of me

3 
before
you

4 
before
you

5 
before
you

Count the soldiers

21
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 
behind 
you

2 
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of 
us

only see
my incoming
messages

2 31

Count the soldiers

22
adapted from MacKay (2003) textbook

2 
before
you



Great Ideas in ML: Message Passing

4 
behind 
you

1 before
you

there's
1 of me

only see
my incoming
messages

Count the soldiers

23
adapted from MacKay (2003) textbook

Belief:
Must be
2 + 1 + 3 = 6 of 
us
2 31

Belief:
Must be
1 + 1 + 4 = 6 of 
us

1 41



Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

1 of me

Each soldier receives reports from all branches of  tree

24
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

3 here

3 here

7 here
(= 3+3+1)

Each soldier receives reports from all branches of  tree

25
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

7 here

3 here

11 here
(= 7+3+1)

Each soldier receives reports from all branches of  tree

26
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing

7 here

3 here

3 here

Belief:
Must be
14 of us

Each soldier receives reports from all branches of  tree

27
adapted from MacKay (2003) textbook



Great Ideas in ML: Message Passing
Each soldier receives reports from all branches of  tree

7 here

3 here

3 here

Belief:
Must be
14 of us

wouldn't work correctly

with a 'loopy' (cyclic) graph

28
adapted from MacKay (2003) textbook



INFERENCE FOR HMMS
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Inference
Question:
True or False: The joint probability of the observations 
and the hidden states in an HMM is given by:

30

Recall:



Inference
Question:
True or False: The probability of the observations 
in an HMM is given by:

31

Recall:



Inference for HMMs

Whiteboard
– Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given 
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of 
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a 
hidden state, given a sequence of observations
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THE SEARCH SPACE FOR 
FORWARD-BACKWARD
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)



time flies like an arrow

n v p d n<START>

Example: HMM for POS Tagging
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A Hidden Markov Model (HMM) provides a joint distribution over the the 
sentence/tags with an assumption of dependence between adjacent tags.

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

v n p d
v .1 .4 .2 .3
n .8 .1 .1 0
p .2 .3 .2 .3
d .2 .8 0 0

ti
m
e

fl
ie
s

lik
e

…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

ti
m
e

fl
ie
s

lik
e

…

v .2 .5 .2
n .3 .4 .2
p .1 .1 .3
d .1 .2 .1

p(n, v, p, d, n, time, flies, like, an, arrow)     =       (.3 * .8 * .2 * .5 * …)



X3X2X1

Y2 Y3Y1

37

find preferred tags

Could be adjective or verb Could be noun or verbCould be verb or noun

Example: HMM for POS Tagging



Inference for HMMs

Whiteboard
– Brute Force Evaluation
– Forward-backward search space
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HOW IS EFFICIENT COMPUTATION 
EVEN POSSIBLE?
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How is efficient computation even 
possible?

• The short answer is dynamic programming!

• The key idea is this:
– We first come up with a recursive definition for the 

quantity we want to compute
– We then observe that many of the recursive 

intermediate terms are reused across timesteps and 
tags

– We then perform bottom-up dynamic programming by 
running the recursion in reverse, storing the 
intermediate quantities along the way!

• This enables us to search the exponentially large
space in polynomial time!
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Derivation of Forward Algorithm
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Derivation:

Definition:



THE FORWARD-BACKWARD 
ALGORITHM
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Inference for HMMs

Whiteboard
– Forward-backward algorithm 

(edge weights version)
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Forward-Backward Algorithm
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Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)



Forward-Backward Algorithm
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Definitions
αt(k) ! p(x1, . . . , xt, yt = k)

βt(k) ! p(xt+1, . . . , xT | yt = k)

Assume
y0 = START
yT+1 = END

1. Initialize

α0(START) = 1 α0(k) = 0, ∀k "= START
βT+1(END) = 1 βT+1(k) = 0, ∀k "= END

2. Forward Algorithm

for t = 1, . . . , T + 1:

for k = 1, . . . ,K:

αt(k) =
K∑

j=1

p(xt | yt = k)αt−1(j)p(yt = k | yt−1 = j)

3. Backward Algorithm

for t = T, . . . , 0:

for k = 1, . . . ,K:

βt(k) =
K∑

j=1

p(xt+1 | yt+1 = j)βt+1(j)p(yt+1 = j | yt = k)

4. Evaluation p(x) = αT+1(END)

5. Marginals p(yt = k | x) = αt(k)βt(k)
p(x)

O(K)O(K2T)

Brute force 
algorithm 
would be 

O(KT)


