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Reminders

* Practice Problems: Exam 2
— Out: Fri, Nov. 4
* Exam 2
— Thu, Nov. 10, 6:30pm - 8:30pm
* Homework 7: Hidden Markov Models

— Out: Fri, Nov. 11
— Due: Mon, Nov. 21 at 11:59pm




SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x(M ~ p(x|0)
Write log-likelihood

40) = log p(x(|@) + ... +log p(x(V)|O)
Compute partial derivatives

00(0)/00, = ...

00(0)/00, = ...

00(0)/00y, = ...
Set derivatives to zero and solve for 6
00(0)/00,, =0 forallme {1, ..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die N times. That is, we have data

D= {x(i)}f]iil

where () € {1,..., M} and (¥ ~ Categorical(¢).

2. A random variable is Categorical written X ~ Categorical(¢)
iff
P(X =2) =p(x;$) = ¢o

where x € {1,..., M} and 2%21 ¢m = 1. The log-likelihood
of the data becomes:

N M
U(p) = Zlog Py St Z ¢m =1
=1 m=1

3. Solving this constrained optimization problem yields the maxi-
mum likelihood estimator (MLE):

N i
HMLE _ No—m _ Di=1 I(z”) = m)

N N




Hidden Markov Model (v1
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Hidden Markov Model (v1)

HMM Parameters:
Emission matrix, A, where P(X; = k|Y: = j) = Ak, Vt, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, ,Vt, k
Initial probs, C, where P(Y; = k) = Ck,Vk
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Joint Distribution (probability mass function):

p(x,y) =p(y1,C <Hp i | yr, A ) (Hp(yt | yt_1,3)>

.O L] .
© | W | 3min

Clo| o
= Cyl (H Ayt,$t> <H Bytlayt>
t=1 t=2




Supervised Learnmg for HMM (v1)

Learning an
HMM
decomposes
into solving two
(independent)
Mixture Models

_________

Data: D = {(x,y@)}¥, wherex = [z,,... Tandy = [y1,...,yr|"
Likelihood:

((A,B,C) Zlogp @) y@ 1A, B,C)

N
=> Zlogp ), B) Zlogp [y, A)
i=1
trar?silon emission
MLE:
A,B,C = argmax /(A, B, C)
A.B,C
N
= C = argmax

B = argmaXZZIng ?/tL) | Yt )1=B)

=1 t=2
= argmaxZZlogp Xy (0 yf A)
i=1 t=1
We can solve the above in closed form, which yields...
. # =k
Ck; = T, Vk
. #@” =kandy?, =)
Bijr = T ) Vi, k
#(Yi—1 = J)
) (i) _ (i) _
Aj7k — #(:Ct k and yt 3)7 VJ, k,

#(w? =)



HMM (two ways)




Hidden Markov Model (v2)
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Hidden Markov Model (v2)




Hidden Markov Model (v2)

Joint Distribution (probability mass function):
yo = START

p(x,yly0) = | [ p(@ely)p(yelye—1)
t=1

T
H Yt Tt yt 1,Yt




Supervised Learning for HMM (v2)

Learning an Data: D = {(X(i_),y(i))}i]\il wherex = [z1,...,z7]T andy = [y1,...,y7]|?
HMM We assume ") = START for all i

.dECOmpC.)SES Likelihood:

into solving two N

(independent) =Y logp(x®,y) | A, B)

Mixture Models i

N
Z |:Zlogp )|yt 17B)+10gp(lf |yf ,A)

=1 g
transxtlon emission

1
! :
1 | o
:_ ___________________ ! A B = argmax/(A,B)
A.B,C
D i
: : :B—argmaxZZlogp ® |yt 17B)
: : =1 t=1
1 1
1 1
: : = argmaxz Zlogp | qf JA)
: : =1 t=1
} }
i a i We can solve the above in closed form, which yields...

_________

A #(yt = kandy®?| =)

B]>k: = . ) VJ,k
#(y = j)

. _ #@” =kandy” = j)

Ajp =" : N

#(y” = j)



BACKGROUND: MESSAGE PASSING



Great Ideas in ML: Message Passing
Count the soldiers




Great Ideas in ML: Message Passing
Count the soldiers

Belief:
Must be

I +I+ I= 6 of
us
\

only sek
my incoming

messages
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Great Ideas in ML: Message Passing
Count the soldiers

here's
of me

Belief:
Must be

Sonly sek
my incoming
messages
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree

24



Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree




Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
® )

Ry —
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Great Ideas in ML: Message Passing

Each soldier receives reports from all branches of tree
’ ~_‘-ﬁ\"t

\})J wouldn't work correctly
> with a 'loopy" (cyclic) graph



INFERENCE FOR HMMS



Inference
e C= ol
Question: ©1 A: _7;"?:(‘ Bz 3% L ~7<
True or False: The joint probability of the observations
and the hidden states in an HMM is given by:

T-1
HA Yt,Tt H Byt>yt+1]
t=1

PX=x,Y=Yy)

y1

Recall:

Emission matrix, A, where P(X; = k|Y: = j) = A, k, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Cy, Vk



Inference
Question- Qq A’TM Q- = lovic C,—F:/vt

2 8% 2% 106%
True or False: The probability of the observations
inan HMM is given by:

P(X =x) Ml = ZP(X 1 "{)

Emission matrix, A, where P(X; = k|Y: = j) = A, k, Vi, k
Transition matrix, B, where P(Y; = k|Y;—1 = j) = B, x, Vi, k
Initial probs, C, where P(Y; = k) = Cy, Vk

Recall:



Inference for HMMs

Whiteboard

— Three Inference Problems for an HMM

1. Evaluation: Compute the probability of a given
sequence of observations

2. Viterbi Decoding: Find the most-likely sequence of
hidden states, given a sequence of observations

3. Marginals: Compute the marginal distribution for a
hidden state, given a sequence of observations



THE SEARCH SPACE FOR
FORWARD-BACKWARD



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {:c(n), y<”)}£}f:1
Sample 1: ' ‘ @ ‘ '
Sample 2: ‘ ' ' ‘ ‘
6O 6 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
OIS,
Sample 4: ‘ ‘ ‘ ‘ ‘

35



Example: HMM for POS Tagging

A Hidden Markov Model (HMM) provides a joint distribution over the the
sentence/tags with an assumption of dependence between adjacent tags.

p(n, v, p, d, n, time, flies, like, an, arrow) — (.3 *8* 0% 5 ® )
v n|p|d v nip d
v ia|.4(2(3 |v|a].4].2].3

2.

3

<START>
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Example: HMM for POS Tagging

Could be verb or noun Could be adjective or verb  Could be noun or verb

37



Inference for HMMs

Whiteboard

— Brute Force Evaluation
— Forward-backward search space



HOW IS EFFICIENT COMPUTATION
EVEN POSSIBLE?



How is efficient computation even
possible?

* The short answer is dynamic programming!

* The key ideais this:

— We first come up with a recursive definition for the
quantity we want to compute

— We then observe that many of the recursive
intermediate terms are reused across timesteps and
tags

— We then perform bottom-up dynamic programming by

running the recursion in reverse, storing the
intermediate quantities along the way!

* This enables us to search the exponentially large
space in polynomial time!

41



Derivation of Forward Algorithm

Definition: D(,E(lc,) 2 ‘Q(x,,,,.,xt,ytzk)

Derivation: leein U5y :: ‘/r”_"s I
O(T(E”D) = F (%1, -+ X7, Y= €ND) S'M'\J"“A oy EN
1 L"[) (x" st Q_IL)\P(ZL) i + 177 (laQ.F e} Jol"n‘,'

- P(XTI@X” .»',XT.\_I Yr\ 'F_(ZI) == b‘, Cond. "“Lf' ¥ #MM

= P("Tl)'r)"?_?_;_r.(" X%. 1 Y1) «— by dof F Joit

T P(XTIYT) \2‘._,&("')'“)"111 1 Y110 YT)J 1"’74,}‘ F Margas
agl N\
PO Z ol ) 5 9
= p Cealyr) Zo plos o Ve ) Pl lyr) plyry) by ok 5 g
e T gARl
= V (Xr ,)'r) ‘;L:‘L,P(x".\i'XT-'ﬂ P(}’rly‘r_b +— i?‘l J—&‘p '3 Jo:\a‘l‘

= F(X-r’)’r) %' °(T-.|()'r-|) P(}’r’)’r-l) = é7 L of O(é(k)




THE FORWARD-BACKWARD
ALGORITHM



Inference for HMMs

Whiteboard

— Forward-backward algorithm
(edge weights version)



Forward-Backward Algorithm

1. Initialize

Oé()(START) =1 Oé()(k) = O, vk 7é START

Br4+1(END) =1 Br+1(k) =0, Vk # END
Definitions
ai(k) 2 p(x1,. .. 20,y = k) 2. Forward Algorithm
Bik) 2 p(ers, ozl =k) g g p

fork=1,... K:
Assume =
ai(k) = 7 =k)oy_1(7 =k 1=

yo = START +(k) jz:;p( t |yt Jar—1(J)p(ys | ye—1 = J)
yr+1 = END

3. Backward Algorithm

fort=1T,..., 1:
fork=1,... K:

K
Bi(k) =D p(@es1 | yerr = 5)Bir ()P(Yr1 = 3 | yr = k)
j=1
4. Evaluation p(x) = ap41(END)

at(k)Bt (k)

5. Marginals p(y: = k | x) = p(x)



Forward-Backward Algorithm

1. Initialize
o (START) = 1 ao(k) = 0, Vk # START
Br+1(END) =1 Br+1(k) =0, Vk # END
Definitions
ay(k) £ p(x1,. ..,z y; = k) 2. Forward Algorithm
Bilk) S p(eess,. . or |9 = Iy fort=1,...,T:
fork=1,... K:
Assume ) =
u : :
ai(k) = x =k)ay_ —kly_q =
yo — START ‘|: t(k) = Z (@t | ye = k)ar—1(7)p(ye = k | ye—1 = J)
= END
AR o(k2T) | O(K) ward Algorithm
fort =
Brute force ¥ 1, .. .,K:

algorithm

would be t(k) =) p(@iv1 | Yer1 = 3)Be1(F)pWer1 =7 | ye = k)
O(K™) 7=1
4. Evaluation p(x) = ap41(END)

5. Marginals p(y: = k | x) = % 46

Ik




