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Reminders

* Homework 6: Learning Theory / Generative
Models

— Out: Thu, Oct. 27
— Due: Fri, Nov. 4 at 11:59pm

 Practice Problems: Exam 2
— Out: Fri, Nov. 4

* Exam 2
— Thu, Nov. 10, 6:30pm - 8:30pm




EXAM 2 LOGISTICS



Exam 2

* Time /Location
— Time: Thu, Nov. 10, 6:30pm - 8:30pm

— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room. Please watch
Piazza carefully for announcements.

* Logistics
— Covered material: Lecture 8 — Lecture 17

— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back,
handwritten with pen/pencil or tablet)



Topics for Exam 1

 Foundations e (lassification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression
* Important Concepts

— Overfitting
— Experimental Design

— Linear Regression



Topics for Exam 2

* (lassification * Learning Theory
— Binary Logistic — PAC Learning
Regression  Generative Models
* Important Concepts — MLE / MAP
— Stochastic Gradient — Naive Bayes
Descent - :
— Regularization Diseriminative

— Feature Engineering

* Feature Learning
— Neural Networks * Regression
— Basic NN Architectures — Linear Regression
— Backpropagation



SAMPLE QUESTIONS



Sample Questions

3.2 Logistic regression

Given a training set {(z;,1;),7 = 1,...,n} where x; € R? is a feature vector and y; € {0,1}
is a binary label, we want to find the parameters w that maximize the likelihood for the
training set, assuming a parametric model of the form

1
1+ exp(—wTz)

p(y = 1|z w) =

The conditional log likelihood of the training set is

w) = iw log p(yi, |z w) + (1 — yi) log(1 — p(yi, |z4; w)), & mL ’ = A;MS
; A

=1

° AR
and the gradient is

Vi(w) = i — p(ys |z w))x;.
(w) = 3_ (i = p(yiles; w) . \l\)e’

o
(b) [5 pts.] What is the form of the classifier output by logistic regression? o L\ (—‘) - 1 'S ? («Tf' \)()7,05

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e, x € {0,1}¢ C R?
where feature x; is rare and happens to appear in the training set with only label 1.
What is w;? Is the gradient ever zero for any finite w? Why is it important_to include
a regularization term to control the norm of w?



Samples Questions

2.1 Train and test errors m

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D", and tested on a separate
test set D', You look at the test error, and find that it is very high. You then compute the training
error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

(a) Increase the training data size. %2’/«»
(b) Decrease the training data size. "7»/b

(¢) Increase model complexity (For example, if your classifier is an SVM, use a more
complex kernel. Or if it is a decision tree, increase the depth). 2 °/°

(d) Decrease model complexity. C]O°/ 6

(e) Train on a combination of D™ and D and test on D' (A} -



Samples Questions

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors.
Consider a classifier trained till convergence on some training data D", and tested on a separate
test set D'**'. You look at the test error, and find that it is very high. You then compute the training

error and find that it is close to O.

%L [1 pts] Say you plot the train and test errors as a function of the model complexity. Which
Q of the following two plots is your plot expected to look like?

—
——
—

Mean Error

Train Error

-‘-‘_\_\_‘_‘_‘_‘_‘_'_'_-—-_

Model Complexity

(a)

Mean Error

\7A C = fxic
5%,

Test Error

Train Error

Model Complexity

(b)



Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or F: It is possible to label 4 points in R? in all possible 24 ways via linear
separators in R?.

(d) [3 pts.] T or F: The VC dimension of a hypothesis space with infinite size is also infinite.



Sample Questions




Sample Questions




Sample Questions

1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed X, ..., X,, ~ Bernoulli(0).
We are going to derive the MLE for 6. Recall that a Bernoulli random variable X takes

values in {0, 1} and has probability mass function given by

P(X;0) =0%(1—6)"*.

(a) [2 pts.] Derive the likelihood, L(0; X1, ..., X,).

~ 1
(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: § = — (3" | X;).
n



Sample Questions

1.3 MAP vs MLE
Answer each question with T or F and provide a one sentence explanation of your

answer:

(a) [2 pts.]@r F: In the limit, as n (the number of samples) increases, the MAP and
MLE estiimates become the same.



Sample Questions




DISCRIMINATIVE AND
GENERATIVE CLASSIFIERS



Generative vs. Discriminative

* Naive Bayes is a generative model:
— Models the joint distribution P(X,Y) = P(X|Y)P(Y)
— Learn by optimizing the (joint) likelihood
— By modelling P(X|Y) and P(Y), we can generate new
data points:
1. Sample alabel y ~ P(Y)
2. Sample features x; ~ P(X4|Y = y)
* Logistic regression is a discriminative model
— Directly models the conditional distribution P(Y|X)
— Learn by optimizing the conditional likelihood

— By just modelling P(Y|X), we can only discriminate (or
distinguish) between classes.



Generative vs. Discriminative
Finite Sample Analysis (Ng & Jordan, 2001)

[Assume that we are learning from a finite training dataset]

Naive Bayes and logistic regression form a generative-
discriminative model pair:

@nodel assumptions are correct: as the amount of training
ata increases, Gaussian Naive Bayes and logistic regression
approach the same (linear) decision boundary!

Furthermore, Gaussian Naive Bayes is a more efficient
learner (requires fewer samples) than Logistic Regression

If model assumptions are incorrect: Logistic Regression has
lower asymptotic error and does better than Gaussian Naive
Bayes
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Naive Bayes vs. Logistic Regression

Features

Naive Bayes:
Features x are assumed to be conditionally independent
given y. (i.e. Naive Bayes Assumption)

Logistic Regression:
No assumptions are made about the form of the features x.
They can be dependent and correlated in any fashion.



Naive Bayes vs. Logistic Regression

Learning (Parameter Estimation)

Naive Bayes:
Parameters are decoupled = Closed form solution for MLE

Logistic Regression:
Parameters are coupled = No closed form solution — must
use iterative optimization techniques instead



Naive Bayes vs. Logistic Regression

Learning (MAP Estimation of Parameters)

Bernoulli Naive Bayes:
Parameters are probabilities = Beta prior (usually) pushes
probabilities away from zero [ one extremes

Logistic Regression:
Parameters are not probabilities > Gaussian prior
encourages parameters to be close to zero

(effectively pushes the probabilities away from zero [ one
extremes)



Summary

1. Naive Bayes provides a framework for
generative modeling

2. Choose the feature distributions P(X;|Y)
based on the data (e.g., Bernoulli for binary
features, Gaussian for continuous features)

3. Train using MLE or MAP estimation

4. Make predictions by maximizing the
posterior P(Y|x')



Learning Objectives

Naive Bayes

You should be able to...

1.
2.

3.

b4

SIS

Write the generative story for Naive Bayes

Create a new Naive Bayes classifier using your favorite
probability distribution as the event model

Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of Bernoulli Naive Bayes

Motivate the need for MAP estimation through the deficiencies
of MLE

Apply the principle of maximum a posteriori (MAP) estimation
to learn the parameters of Bernoulli Naive Bayes

Describe the tradeoffs of generative vs. discriminative models
Implement Bernoulli Naive Bayes

Describe how the variance affects whether a Gaussian Naive
Bayes model will have a linear or nonlinear decision boundary



THE BIG PICTURE



Learning Paradigms:

ML Big Picture

Problem Formulation:

. . : N ~

What data is available and ’\/\Vhat is the structure of our output prediction: 2
when? What form of prediction? boolean Binary Classification o O
*  supervised learning categorical Multiclass Classification 42’_8
° i i -

unSL.'perV'se.d Ieammg. ordinal Ordinal Classification - =
. semi-supervised learning . S K
. reinforcement learning = Lreal Regression O
*  active learning ordering Ranking ‘g)o IS
«  imitation learning c ¥
. domain adaptation multiple discrete  Structured Prediction €— KTy o
- online learning \/ multiple continuous (e.g. dynamical systems) = % 5
*  density estimation both discrete & e.g. mixed graphical models S a9
. recommender sys\‘aw( - cont (eg grap ) S
»  feature learning i x Z
O manifold learning
*  dimensionality reduction Facets of Building ML Big Ideas in ML:
* ensemblelearning = Systems: : . . .
- distant supervision : Which are the ideas driving
*  hyperparameter o timization\/ How to build systems that are development of the field?

yperp P robust, efficient, adaptive, : T
effective? S * inductive bias

Theoretical Foundations: 1. Data prep V4 «  generdlization / overfitting v/
What principles guide learning? 2.  Model selection *  bias-variance decomposition

probabilistic <= 3. STQZTC"?)g (optimization / . generative vs. discriminative™~

information theoretic
evolutionary search

UDO0O0ODO

ML as optimization <

H ter tuni *  deep nets, graphical models
4. yperparameter tuning-on . :
validation data PAC learning

5. (Blind) Assessment on test * distant rewards
data v



Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Given data D = {x(®) y@IN e Perceptron: hg(x) = sign(6”x)
2. (a) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 681x

arameterized by 6
s y6) e Discriminative Models: hg(x) = argmax pg(y | x)

(b) Choose an objective function Jp(8) = - - - y
(relies on data) T
o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(0) o Neural Net (classification):

. -1 — NHT (AT (1) (2)

6 ~ argmin Jp () pe(y=1]x%x)=oc(W)To(W)Tx +bM) 4+ b?)

o e Generative Models: hg(x) = argmax pg (X, y)
y

4. Predict on new test example Xpew Using hg(-)

M
= heo(Xnew) o Naive Bayes: pg(x,y) = po(y) H po(Tm | V)
m=1
Optimization Method
Objective Functi
e Gradient Descent: @ — 0 — yVgJ(0) DASIASUEILAEEL
. N
e SGD: 0 — 6 — YVoJV(0) o MLE: J(8) = — Y logp(x?, y®)
fori ~ Uniform(1,..., N) i—1
N
1 .
where J(0) = — Y J®(9) N : .
N ; e MCLE: J(0) = — Zlogp(y(’) | x®)
i=1
e mini-batch SGD
e L2 Regularized: J'(0) = J(0) + )\||0]|3
e closed form (same as Gaussian prior p(@) over parameters)
1. compute partial derivatives e L1Regularized: J'(0) = J(0) + \||0]|

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)



MOTIVATION: STRUCTURED
PREDICTION



Structured Prediction

* Most of the models we’ve seen so far were
for classification
— Given observations: X = (X}, X5 o, X
— Predict a (binary) label: y

* Many real-world problems require
structured prediction
— Given observations: X = (X}, X5 ., X
— Predict a structure: Y=05,Y .0, V)

* Some classification problems benefit from
latent structure



Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Dataset for Supervised
Part-of-Speech (POS) Tagging

Data: D = {z™, y(n)}fzvzl
Sample 1: ‘ ‘ @ ‘ '
Sample 2: ‘ ‘ ‘ ‘ ‘
O © 6 O 6
Sample 3: ‘ ‘ @ ‘ ‘
CHNONNS,
Sample 4: ' ‘ ‘ ' ‘




Dataset for Supervised

Handwriting Recognition
Data: D ={z™,y"M},

00O0POOOOO® 1

ANEEEERaEN -
B YoloX JororoY s

Imﬂlllﬂl e
(m)

Sample 1:




Dataset for Supervised
Phoneme (Speech) Recognition
Data: D = {z™ y" N

Sample 1:
OOQ QOOCC CO b
".

Figures from (Jansen & Niyogi, 2013)



(very small) Dataset for
Scene Understanding

-~

- y(l)




Congressional Voting

e Variables:

— Representative’s vote

— Text of all speeches of a
representative

— Local contexts of
references between two
representatives

* Interactions: o
— Words used by ¢
representative and their |

vote

— Pairs of representatives
and their local context -

5 \‘. 'K\:

Ve ot )




Structured Prediction Examples

* Examples of structured prediction
— Part-of-speech (POS) tagging
— Handwriting recognition
— Speech recognition
— Word alignment
— Congressional voting

* Examples of latent structure
— Object recognition



Case Study: Object Recognition

Data consists of images x and labels y.

D

} y@

leopard } ye

43



Case Study: Object Recognition

Data consists of images x and labels y.

* Preprocess datainto
“patches”

* Posit alatent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

* Define graphical
model with these
latent variables in
mind

e zisnotobserved at
train or test time

leopard



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

45



Case Study: Object Recognition

Data consists of images x and labels y.

Preprocess data into
“patches”

Posit a latent labeling z
describing the object’s
parts (e.g. head, leg,
tail, torso, grass)

Define graphical
model with these
latent variables in
mind

z is not observed at
train or test time

46



Structured Prediction




Machine Learning




Machine Learning
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BACKGROUND



Background: Chain Rule
of Probability




Background:
Conditional Independence

Random variables A and B are conditionally
independent given C'if:

P(A, B|C) = P(A|C)P(B|C) (1)
or equivalently:
P(A|B,C) = P(A|C) (2)
We write this as:

All B|C L aterwe wilalso
ite: 1</, B>



HIDDEN MARKOV MODEL (HMM)



From Mixture Model to HMM

“Naive Bayes””: HP X¢|Y)p(Yz)
t=1

o POGY) = P(Y) (H P(XtIYz)> (Hmmn)



Markov Models

Whiteboard

— Example: Tunnel Closures
[courtesy of Roni Rosenfeld]

— First-order Markov assumption
— Conditional independence assumptions

56
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Mixture Model for Time Series Data

We could treat each (tunnel state, travel time) pair as independent. This
corresponds to a Naive Bayes model with a single feature (travel time).

p(0,5,8,0,C,2m,3m, 18m,0m,27m) =  (8¥.2*.1%*.03%...)
L / 9
7(‘ X¢

O|.8 O|.8

S| .1 S | .1

C|.1 Cl .1

© ® ©
S5 .5 . B85 8 .
E Bl E| - ElEIE:
— | I M —~ | A0 M
A0.21.3 @ O|.1(.2].3 @ @
.01..02/.03 S .01.02..03
o|o0|0 Clojo|o
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Hidden Markov Model

A Hidden Markov Model (HMM) provides a joint distribution over the the
tunnel states / travel times with an assumption of dependence between
adjacent tunnel states.

p(0,5,8,0,C,2m,3m, 18m,9m,27m) = (.8 *.08 * 2*.7% .03 %*...)

el

S|C O/S C
K O |.9 0802 O |.9[08.02
= S|.2/.7 1 S |.2|.7]|.1
_C1 Cl|.9/0].1 Cl|.9/0]|.
0 1O, ©
Sl 5| 9 S 8 5
EEE E|E E
—~ | M —~ | M
A0.21.3 O|.1].2].3 @
01.02.03 S .01.02..03
o|o0|0 C o|o|o
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From Mixture Model to HMM

“Naive Bayes””: HP X¢|Y)p(Yz)
t=1

o POGY) = P(Y) (H P(XtIYz)> (Hmmn)



SUPERVISED LEARNING FOR
HMMS



Recipe for Closed-form MLE

Assume data was generated i.i.d. from some model
(i.e. write the generative story)

x() ~ p(x|6)
Write log-likelihood

40) =log p(x|0) + ... +log p(x(V)|O)
Compute partial derivatives

0((0)/06, = ...

0((0)/06, = ...

00(0)/06, = ...
Set derivatives to zero and solve for
0((0)/00,,=0forallme{y,..., M}

OMLE —

Compute the second derivative and check that {0) is concave down
at eMLE



MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a
M-sided (weighted) die N times. That is, we have data

D= {x(i)}i\;l
where () € {1,..., M} and z(¥) ~ Categorical(¢).

2. A random variable is Categorical written X ~ Categorical(¢)
iff

P(X =) =p(z;¢) = ¢

wherez € {1,...,M}and 3. _. ¢,, = 1. The log-likelihood
of the data becomes:

3. Solving this constraiggd optimization problem yields the maxi-

mum likelihood estimator (MLE):

N i
HMLE Ne=m _ >icg (2 = m)
i N N
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