• Binary label
 • $Y \sim \text{Bernoulli}(\pi)$
 • $\hat{\pi} = \frac{N_{Y=1}}{N}$
 • $N = \# \text{ of data points}$
 • $N_{Y=1} = \# \text{ of data points with label 1}$

• Binary features
 • $X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y})$
 • $\hat{\theta}_{d,y} = \frac{N_{Y=y, X_d=1}}{N_{Y=y}}$
 • $N_{Y=y} = \# \text{ of data points with label } y$
 • $N_{Y=y, X_d=1} = \# \text{ of data points with label } y \text{ and feature } X_d = 1$
What if some Word-Label pair never appears in our training data?

Predictions

• Given a test data point \(x' = [x'_1, \ldots, x'_D]^T \)

\[
P(Y=1|x') \propto P(x'|Y=1)P(Y=1) = \left(\prod_{d=1}^{D} P(x'_d|Y=1) \right) P(Y=1)
\]

\[
\hat{x} = \left(\prod_{d=1}^{D} \hat{\theta}_{d,1} x'_d (1-\hat{\theta}_{d,1})^{1-x'_d} \right)^\hat{\pi} := \hat{p}_1
\]

\[
P(Y=0|x') \propto \left(\prod_{d=1}^{D} \hat{\theta}_{d,0} x'_d (1-\hat{\theta}_{d,0})^{1-x'_d} \right) (1-\hat{\pi}) := \hat{p}_0
\]

\[
\hat{y} = \begin{cases} 1 & \text{if } \hat{p}_1 \geq \hat{p}_0 \\
0 & \text{otherwise} \end{cases}
\]
What if some Word-Label pair never appears in our training data?

<table>
<thead>
<tr>
<th></th>
<th>x_1 ("hat")</th>
<th>x_2 ("cat")</th>
<th>x_3 ("dog")</th>
<th>x_4 ("fish")</th>
<th>x_5 ("mom")</th>
<th>x_6 ("dad")</th>
<th>y (Dr. Seuss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The Cat in the Hat gets a Dog (by ???)

- If some $\hat{\theta}_{d,y} = 0$ and that word appears in our test data x', then $P(Y = y|x') = 0$ even if all the other features in x' point to the label being y!
- The model has been overfit to the training data
- We can address this with a prior over the parameters!
Setting the Parameters via MAP

- **Binary label**
 - \(Y \sim \text{Bernoulli}(\pi) \)
 - \(\hat{\pi} = \frac{N_{Y=1}}{N} \)
 - \(N = \# \text{ of data points} \)
 - \(N_{Y=1} = \# \text{ of data points with label 1} \)

- **Binary features**
 - \(X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y}) \) and \(\theta_{d,y} \sim \text{Beta}(\alpha, \beta) \)
 - \(\hat{\theta}_{d,y} = \frac{N_{Y=y, X_d=1} + (\alpha - 1)}{N_{Y=y} + (\alpha - 1) + (\beta - 1)} \)
 - \(N_{Y=y} = \# \text{ of data points with label } y \)
 - \(N_{Y=y, X_d=1} = \# \text{ of data points with label } y \text{ and feature } X_d = 1 \)
 - Common choice: \(\alpha = 2, \beta = 2 \)