10-301/601: Introduction to Machine Learning Lecture 17.5 - Naïve Bayes Predictions

Henry Chai 11/1/22

Bernoulli Naïve Bayes

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$

•
$$\hat{\pi} = N_{Y=1}/N$$

- \sim N = # of data points
 - $N_{Y=1}$ = # of data points with label 1
- Binary features
 - $X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y})$

$$\bullet \ \widehat{\theta}_{d,y} = \frac{N_{Y=y,X_d=1}}{N_{Y=y}}$$

- $\vec{N}_{Y=y}$ = # of data points with label y
 - $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$

What if some
Wendelabel
Phair reever
Appears in our
thanking data?
Predictions

• Given a test data point $\mathbf{x}' = [x_1', ..., x_D']^T$ P(Y=1|X') or P(X'|Y=1) P(Y=1) $= \left(\frac{1}{\pi} P(x_d'|Y=1)\right) P(Y=1)$ $P(Y=0|X') \propto (\frac{\pi}{1-\theta_{1,1}})^{1-X_{1}} (1-\frac{\pi}{1-x_{1}})^{1-X_{1}} (1-\frac{\pi}{1-x_{1}}$ $\hat{\gamma} = \begin{cases} 1 & \text{if } P_1 \geq P_0 \\ 0 & \text{otherwise} \end{cases}$

What if some Word-Label pair never appears in our training data?

<i>x</i> ₁ ("hat")	x ₂ ("cat")	x ₃ ("dog")	x ₄ ("fish")	x ₅ ("mom")	<i>x</i> ₆ ("dad")	<i>y</i> (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0

The Cat in the Hat gets a Dog (by ???)

- If some $\hat{\theta}_{d,y} = 0$ and that word appears in our test data x', then P(Y = y | x') = 0 even if all the other features in x' point to the label being y!
- The model has been overfit to the training data
- We can address this with a prior over the parameters!

Setting the Parameters via MAP

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$

•
$$\hat{\pi} = \frac{N_{Y=1}}{N}$$

- N = # of data points
- $N_{Y=1}$ = # of data points with label 1
- Binary features

•
$$X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y}) \text{ and } \theta_{d,y} \sim \text{Beta}(\alpha, \beta)$$

$$\hat{\theta}_{d,y} = \frac{N_{Y=y,X_{d=1}} + (\alpha - 1)}{N_{Y=y} + (\alpha - 1) + (\beta - 1)}$$

- $N_{Y=y}$ = # of data points with label y
- $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$
- Common choice: $\alpha = 2$, $\beta = 2$