10-301/601: Introduction to Machine Learning Lecture 17 - Naïve Bayes

Henry Chai
10/31/22

- Announcements:
- HW6 released 10/27, due 11/4 at 11:59 PM
- Only two late days allowed on HW6
- HW6 recitation on Wednesday 11/2; next lecture is on Friday, 11/4
- Exam 2 on 11/10
- All topics between Lecture 8 and Lecture 17 (today's lecture) are in-scope
- Exam 1 content may be referenced but will not be the primary focus of any question
- Fill out the mid-semester survey, due 11/2
- As of 9 AM this morning, only $228 / 405 \approx 56 \%$
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

$$
\begin{aligned}
& \frac{N_{1}}{\hat{\phi}}-\frac{N_{0}}{1-\hat{\phi}}=0 \rightarrow \frac{N_{1}}{\hat{\phi}}=\frac{N_{0}}{1-\hat{\phi}} \\
\rightarrow & N_{1}(1-\hat{\phi})=N_{0} \hat{\phi} \rightarrow N_{1}=\hat{\phi}\left(N_{0}+N_{1}\right) \\
\rightarrow & \hat{\phi}=\frac{N_{1}}{N_{0}+N_{1}}
\end{aligned}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$

Poll Question 1:

After flipping your coin 5 times, what is the MLE of your coin?
A. $0 / 5$
B. $1 / 5$
C. $2 / 5$
D. $3 / 5$
E. $\pi / 5$ (TOXIC)
F. $4 / 5$
G. 5/5

- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

$$
\begin{aligned}
& \frac{N_{1}}{\hat{\phi}}-\frac{N_{0}}{1-\hat{\phi}}=0 \rightarrow \frac{N_{1}}{\hat{\phi}}=\frac{N_{0}}{1-\hat{\phi}} \\
\rightarrow & N_{1}(1-\hat{\phi})=N_{0} \hat{\phi} \rightarrow N_{1}=\hat{\phi}\left(N_{0}+N_{1}\right) \\
\rightarrow & \hat{\phi}=\frac{N_{1}}{N_{0}+N_{1}}
\end{aligned}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's

Maximum a
 Posteriori
 (MAP)

Estimation

- Insight: sometimes we have prior information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the posterior distribution over the parameters
- MLE finds $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta)$
- MAP finds $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\theta \mid \mathcal{D})$

$$
\begin{aligned}
& =\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) p(\theta) / p(\mathcal{D}) \\
& =\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) p(\theta)
\end{aligned}
$$

$$
=\underset{\theta}{\operatorname{argmax}} \underbrace{\log p(\mathcal{D} \mid \theta)+\log p(\theta)}_{\text {log-posterior }}
$$

Maximum a Posteriori (MAP)
 Estimation

1. Specify the generative story, i.e., the data generating distribution, including a prior distribution

- How on earth do we pick a prior?

2. Maximize the log-posterior of $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$

$$
\ell_{M A P}(\theta)=\log p(\theta)+\sum_{i=1}^{N} \log p\left(x^{(i)} \mid \theta\right)
$$

3. Solve in closed form: take partial derivatives, set to 0 and solve

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- Assume a Beta prior over the parameter ϕ, which has pdf

$$
f(\phi \mid \alpha, \beta)=\frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

where $\mathrm{B}(\alpha, \beta)=\int_{0}^{1} \phi^{\alpha-1}(1-\phi)^{\beta-1} d \phi$ is a normalizing constant to ensure the distribution integrates to 1

Beta
 Distribution

Beta Distribution w/ $\alpha=1$ and $\beta=1$

Beta Distribution $w / \alpha=2$ and $\beta=2$

Beta Distribution w/ $\alpha=2$ and $\beta=5$

Beta Distribution w/ $\alpha=10$ and $\beta=10$

Why use this strange looking Beta prior?

The Beta distribution is the conjugate prior for the Bernoulli distribution!

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- Assume a Beta prior over the parameter ϕ, which has pdf

$$
f(\phi \mid \alpha, \beta)=\frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

where $\mathrm{B}(\alpha, \beta)=\int_{0}^{1} \phi^{\alpha-1}(1-\phi)^{\beta-1} d \phi$ is a normalizing constant to ensure the distribution integrates to 1

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-posterior is

$$
\begin{aligned}
\ell(\phi)= & \log f(\phi \mid \alpha, \beta)+\sum_{n=1}^{N} \log p\left(x^{(n)} \mid \phi\right) \\
= & \log \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}+\sum_{n=1}^{N} \log \phi^{x^{(n)}}(1-\phi)^{1-x^{(n)}} \\
= & (\alpha-1) \log \phi+(\beta-1) \log (1-\phi)-\log \mathrm{B}(\alpha, \beta) \\
& +\sum_{n=1}^{N} x^{(n)} \log \phi+\left(1-x^{(n)}\right) \log (1-\phi) \\
= & \left(\alpha-1+N_{1}\right) \log \phi+\left(\beta-1+N_{0}\right) \log (1-\phi) \\
& -\log \mathrm{B}(\alpha, \beta)
\end{aligned}
$$

Coin
Flipping
MAP

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the partial derivative of the log-posterior is

$$
\frac{\partial \ell}{\partial \phi}=\frac{\left(\alpha-1+N_{1}\right)}{\phi}-\frac{\left(\beta-1+N_{0}\right)}{1-\phi}
$$

$$
\rightarrow \hat{\phi}_{M A P}=\frac{\left(\alpha-1+N_{1}\right)}{\left(\beta-1+N_{0}\right)+\left(\alpha-1+N_{1}\right)}
$$

- $\alpha-1$ is a "pseudocount" of the number of 1 's (or heads) you've "observed"
- $\beta-1$ is a "pseudocount" of the number of 0 's (or tails) you've "observed"
- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):

Coin
Flipping
MAP:
Example

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=2$ and $\beta=5$, then

$$
\phi_{M A P}=\frac{(2-1+10)}{(2-1+10)+(5-1+2)}=\frac{11}{17}<\frac{10}{12}
$$

- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):
Coin
Flipping
MAP:
Example

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=101$ and $\beta=101$, then

$$
\phi_{M A P}=\frac{(101-1+10)}{(101-1+10)+(101-1+2)}=\frac{110}{212} \approx \frac{1}{2}
$$

- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):

Coin
Flipping
MAP:
Example

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=1$ and $\beta=1$, then

$$
\phi_{M A P}=\frac{(1-1+10)}{(1-1+10)+(1-1+2)}=\frac{10}{12}=\phi_{M L E}
$$

You should be able to...

- Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random variables, expectation and variance, joint

MLE/MAP Learning Objectives

 probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence- State the principle of maximum likelihood estimation and explain what it tries to accomplish
- State the principle of maximum a posteriori estimation and explain why we use it
- Derive the MLE or MAP parameters of a simple model in closed form

Text Data

- https://www.nytimes.com/20 22/10/13/movies/halloween-ends-review.html
- https://www.nytimes.com/20 22/10/20/business/the-spirit-of-halloween.html
- https://www.theonion.com/b iden-issues-urgent-warning-for-americans-to-decide-wha1849597566
'Halloween Ends' Review: It Probably Doesn't
David Gordon Green wraps up his reboot trilogy for a horror
franchise that never stays dead for long.

Biden Issues Urgent Warning For Americans To Decide What To Be For Halloween Now
| 9/30/22 5:30AM | Alerts
The Spirit c

Text Data

Bag-of-Words Model

x_{1} ("hat")	$\begin{gathered} x_{2} \\ \text { ("cat") } \end{gathered}$	$\begin{gathered} x_{3} \\ \left(" \operatorname{cog}^{\prime}\right) \end{gathered}$	$\begin{gathered} x_{4} \\ (\text { "fish") } \end{gathered}$	$\begin{gathered} x_{5} \\ \text { ("mom") } \end{gathered}$	$\begin{gathered} x_{6} \\ (\text { "dad" }) \end{gathered}$	$\begin{gathered} y \\ \text { (Dr. Seuss) } \end{gathered}$
1	1	0	0	0	0	1

Bag-of-Words Model

Bag-of-Words Model

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} $(" d a d ")$	y (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0

Go, Dog. Go!
(by P. D. Eastman)
by P.D.Dastman

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} ("dad")	y (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1

Bag-of-Words Model

Bag-of-Words Model

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} $($ ("mom")	x_{6} $(" d a d ")$	y (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0

Are You
 My

Mother?
Are You My Mother? (by P. D. Eastman)

- Define a decision rule
- Given a test data point x^{\prime}, predict its label \hat{y} using the posterior distribution $P\left(Y=y \mid X=x^{\prime}\right)$

Recall:
 Building a
 Probabilistic Classifier

- Common choice: $\hat{y}=\operatorname{argmax} P\left(Y=y \mid X=x^{\prime}\right)$ y
- Model the posterior distribution
- Option 1 - Model $P(Y \mid X)$ directly as some function of X (recall: logistic regression)
- Option 2 - Use Bayes' rule (today!):

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)} \propto P(X \mid Y) P(Y)
$$

- Define a decision rule
- Given a test data point x^{\prime}, predict its label \hat{y} using the posterior distribution $P\left(Y=y \mid X=x^{\prime}\right)$

How hard is modelling $P(X \mid Y)$?

- Common choice: $\hat{y}=\operatorname{argmax} P\left(Y=y \mid X=x^{\prime}\right)$ y
- Model the posterior distribution
- Option 1 - Model $P(Y \mid X)$ directly as some function of X (recall: logistic regression)
- Option 2 - Use Bayes' rule (today!):

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)} \propto P(X \mid Y) P(Y)
$$

How hard is modelling $P(X \mid Y)$?

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} ("dad")	$P(X \mid Y=1)$	$P(X \mid Y=0)$
0	0	0	0	0	0	θ_{1}	θ_{64}
1	0	0	0	0	0	θ_{2}	θ_{65}
1	1	0	0	0	0	θ_{3}	θ_{66}
1	0	1	0	0	0	θ_{4}	θ_{67}
\vdots							
1	1	1	1	1	1	$1-\sum_{i=1}^{63} \theta_{i}$	$1-\sum_{i=64}^{126} \theta_{i}$

- Assume features are conditionally independent given the label:

$$
P(X \mid Y)=\prod_{d=1}^{D} P\left(X_{d} \mid Y\right)
$$

- Pros:
- Significantly reduces computational complexity
- Also reduces model complexity, combats overfitting
- Cons:
- Is a strong, often illogical assumption
- We'll see a relaxed version of this later in the semester when we discuss Bayesian networks
- Define a model and model parameters
- Make the naïve Bayes assumption
- Assume independent, identically distributed (iid) data
- Parameters: $\pi=P(Y=1), \theta_{d, y}=P\left(X_{d}=1 \mid Y=y\right)$

Recipe for Naïve Bayes

- Write down an objective function
- Maximize the log-likelihood
- Optimize the objective w.r.t. the model parameters
- Solve in closed form: take partial derivatives, set to 0 and solve

$$
\begin{aligned}
\ell_{\mathcal{D}}(\pi, \boldsymbol{\theta}) & =\log P\left(\mathcal{D}=\left\{\boldsymbol{x}^{(1)}, y^{(1)}, \ldots, \boldsymbol{x}^{(N)}, y^{(N)}\right\} \mid \pi, \boldsymbol{\theta}\right) \\
& =\log \prod_{n=1}^{N} P\left(\boldsymbol{x}^{(n)}, y^{(n)} \mid \pi, \boldsymbol{\theta}\right)=\log \prod_{n=1}^{N} P\left(\boldsymbol{x}^{(n)} \mid y^{(n)}, \boldsymbol{\theta}\right) P\left(y^{(n)} \mid \pi\right) \\
& =\log \prod_{n=1}^{N}\left(\prod_{d=1}^{D} P\left(x_{d}^{(n)} \mid y^{(n)}, \theta_{d, 1}, \theta_{d, 0}\right)\right) P\left(y^{(n)} \mid \pi\right) \\
& =\sum_{n=1}^{N}\left(\sum_{d=1}^{D} \log P\left(x_{d}^{(n)} \mid y^{(n)}, \theta_{d, 1}, \theta_{d, 0}\right)\right)+\log P\left(y^{(n)} \mid \pi\right) \\
& =\sum_{n: y^{(n)}=1}\left(\sum_{d=1}^{D} \log P\left(x_{d}^{(n)} \mid \theta_{d, 1}\right)\right) \\
& +\sum_{n: y^{(n)}=0}\left(\sum_{d=1}^{D} \log P\left(x_{d}^{(n)} \mid \theta_{d, 0}\right)\right)+\sum_{n=1}^{N} \log P\left(y^{(n)} \mid \pi\right)
\end{aligned}
$$

- Binary label
- $Y \sim \operatorname{Bernoulli}(\pi)$
- $\hat{\pi}=N_{Y=1} / N_{N}$
- $N=\#$ of data points
- $N_{Y=1}=\#$ of data points with label 1
- Binary features
- $X_{d} \mid Y=y \sim \operatorname{Bernoulli}\left(\theta_{d, y}\right)$
- $\hat{\theta}_{d, y}={ }^{N_{Y=y, X_{d}=1} / N_{Y=y}}$
- $N_{Y=y}=\#$ of data points with label y
- $N_{Y=y, X_{d}=1}=\#$ of data points with label y and feature $X_{d}=1$

Setting the Parameters via MLE

Poll Question 2:
Given this
dataset, what is the MLE of π ?

Poll Question 3:
Given this dataset, what is the MLE of $\theta_{3,1}$?

x_{1}	x_{2}	x_{3}	y
1	0	1	0
0	1	0	1
0	1	1	1
0	0	1	0
1	0	1	0
1	0	1	1

A. 0/6
B. $1 / 6$
C. $2 / 6$
D. $3 / 6$
E. $4 / 6$
F. 5/6
G. 6/6
H. 7/6 (TOXIC)

- Binary label
- $Y \sim \operatorname{Bernoulli}(\pi)$
- $\hat{\pi}=N_{Y=1} / N_{N}$
- $N=\#$ of data points
- $N_{Y=1}=\#$ of data points with label 1
- Binary features
- $X_{d} \mid Y=y \sim \operatorname{Bernoulli}\left(\theta_{d, y}\right)$
- $\hat{\theta}_{d, y}={ }^{N_{Y=y, X_{d}=1} / N_{Y=y}}$
- $N_{Y=y}=\#$ of data points with label y
- $N_{Y=y, X_{d}=1}=\#$ of data points with label y and feature $X_{d}=1$
- Binary label
- $Y \sim \operatorname{Bernoulli}(\pi)$
- $\hat{\pi}=N_{Y=1} / N$
- $N=\#$ of data points
- $N_{Y=1}=\#$ of data points with label 1
- Discrete features (X_{d} can take on one of K possible values)
- $X_{d} \mid Y=y \sim$ Categorical $\left(\theta_{d, 1, y}, \ldots, \theta_{d, K-1, y}\right)$
- $\hat{\theta}_{d, k, y}=N_{Y=y, X_{d}=k} / N_{Y=y}$
- $N_{Y=y}=\#$ of data points with label y
- $N_{Y=y, X_{d}=k}=\#$ of data points with label y and feature $X_{d}=k$
- Binary label
- $Y \sim \operatorname{Bernoulli}(\pi)$
- $\hat{\pi}=N_{Y=1} / N_{N}$
- $N=\#$ of data points
- $N_{Y=1}=\#$ of data points with label 1
- Real-valued features

$$
\begin{aligned}
& \cdot X_{d} \mid Y=y \sim \operatorname{Gaussian}\left(\mu_{d, y}, \sigma_{d, y}^{2}\right) \\
& \text { - } \hat{\mu}_{d, y}=\frac{1}{N_{Y=y}} \sum_{n: y^{(n)}=y} x_{d}^{(n)} \\
& \text { - } \hat{\sigma}_{d, y}^{2}=\frac{1}{N_{Y=y}} \sum_{n: y^{(n)}=y}\left(x_{d}^{(n)}-\hat{\mu}_{d, y}\right)^{2}
\end{aligned}
$$

- $N_{Y=y}=\#$ of data points with label y
- Discrete label (Y can take on one of M possible values)
- $Y \sim$ Categorical $\left(\pi_{1}, \ldots, \pi_{M}\right)$
- $\hat{\pi}_{m}=N_{Y=m} /{ }_{N}$
- $N=\#$ of data points
- $N_{Y=m}=\#$ of data points with label m
- Real-valued features
- $X_{d} \mid Y=y \sim \operatorname{Gaussian}\left(\mu_{d, y}, \sigma_{d, y}^{2}\right)$
- $\hat{\mu}_{d, y}=\frac{1}{N_{Y=y}} \sum_{n: y^{(n)}=y} x_{d}^{(n)}$
- $\hat{\sigma}_{d, y}^{2}=\frac{1}{N_{Y=y}} \sum_{n: y^{(n)}=y}\left(x_{d}^{(n)}-\hat{\mu}_{d, y}\right)^{2}$
- $N_{Y=y}=\#$ of data points with label y

Visualizing Gaussian Naive Bayes

- Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Deleted two of the four features, so that input space is 2D
0	4.3	3.0	
0	4.9	3.6	
0	5.3	3.7	
1	4.9	2.4	
1	5.7	2.8	
1	6.3	3.3	
1	6.7	3.0	

Visualizing
 Gaussian
 Nailve
 Bayes
 (2 classes)

Visualizing
 Gaussian
 Nailve
 Bayes
 (2 classes)

Classification with Naive Bayes

Visualizing Gaussian Nailve
 Bayes
 (2 classes,
 equal
 variances)

Classification with Naive Bayes

Visualizing Gaussian Nailve
Bayes
(2 classes, learned variances)

Classification with Naive Bayes

Visualizing Gaussian Nailve
Bayes
(3 classes, equal variances)

Classification with Naive Bayes

Visualizing Gaussian Nailve
Bayes
(3 classes, learned variances)

Visualizing
Gaussian
Naïve
Bayes
(2 classes,
learned
variances)

Visualizing Gaussian Nailve
 Bayes
 (2 classes,
 learned
 variances)

Bernoulli
 Naïve
 Bayes:
 Making
 Predictions
 - Given a test data point $\boldsymbol{x}^{\prime}=\left[x_{1}^{\prime}, \ldots, x_{D}^{\prime}\right]^{T}$
 $$
\begin{aligned} P\left(Y=1 \mid x^{\prime}\right) & \propto P(Y=1) P\left(x^{\prime} \mid Y=1\right) \\ & =\hat{\pi} \prod_{d=1}^{D} \hat{\theta}_{d, 1}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 1}\right)^{1-x_{d}^{\prime}} \end{aligned}
$$
 $$
P\left(Y=0 \mid x^{\prime}\right) \propto(1-\hat{\pi}) \prod_{d=1}^{D} \hat{\theta}_{d, 0}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 0}\right)^{1-x_{d}^{\prime}}
$$
 $$
\hat{y}=\left\{\begin{array}{l} 1 \text { if } \hat{\pi} \prod_{d=1}^{D} \hat{\theta}_{d, 1}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 1}\right)^{1-x_{d}^{\prime}}> \\ \quad(1-\hat{\pi}) \prod_{d=1}^{D=} \hat{\theta}_{d, 0}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 0}\right)^{1-x_{d}^{\prime}} \\ 0 \text { otherwise } \end{array}\right.
$$

What if some Word-Label pair never appears in our training data?

- Given a test data point $\boldsymbol{x}^{\prime}=\left[x_{1}^{\prime}, \ldots, x_{D}^{\prime}\right]^{T}$

$$
\begin{aligned}
P\left(Y=1 \mid x^{\prime}\right) & \propto P(Y=1) P\left(x^{\prime} \mid Y=1\right) \\
& =\hat{\pi} \prod_{d=1}^{D} \hat{\theta}_{d, 1}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 1}\right)^{1-x_{d}^{\prime}}
\end{aligned}
$$

$$
P\left(Y=0 \mid x^{\prime}\right) \propto(1-\hat{\pi}) \prod_{d=1}^{D} \hat{\theta}_{d, 0}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 0}\right)^{1-x_{d}^{\prime}}
$$

$$
\hat{y}=\left\{\begin{array}{l}
1 \text { if } \hat{\pi} \prod_{d=1}^{D} \hat{\theta}_{d, 1}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 1}\right)^{1-x_{d}^{\prime}}> \\
\quad(1-\hat{\pi}) \prod_{d=1}^{a=1} \hat{\theta}_{d, 0}^{x_{d}^{\prime}}\left(1-\hat{\theta}_{d, 0}\right)^{1-x_{d}^{\prime}} \\
0 \text { otherwise }
\end{array}\right.
$$

What if some Word-Label pair never appears in our training data?

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} ("dad")	y (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0

The Cat in the Hat gets a Dog (by ???)

- If some $\hat{\theta}_{d, y}=0$ and that word appears in our test data \boldsymbol{x}^{\prime}, then $P\left(Y=y \mid \boldsymbol{x}^{\prime}\right)=0$ even if all the other features in x^{\prime} point to the label being y !
- The model has been overfit to the training data
- We can address this with a prior over the parameters!
- Binary label
- $Y \sim \operatorname{Bernoulli}(\pi)$
- $\hat{\pi}={ }^{N_{Y=1} / N}$
- $N=\#$ of data points
- $N_{Y=1}=\#$ of data points with label 1

Setting the Parameters via MAP

- Binary features
- $X_{d} \mid Y=y \sim \operatorname{Bernoulli}\left(\theta_{d, y}\right)$ and $\theta_{d, y} \sim \operatorname{Beta}(\alpha, \beta)$
- $\hat{\theta}_{d, y}={ }^{N_{Y=y, X_{d}=1}+(\alpha-1)} /_{N_{Y=y}+(\alpha-1)+(\beta-1)}$
- $N_{Y=y}=\#$ of data points with label y
- $N_{Y=y, X_{d}=1}=\#$ of data points with label y and feature $X_{d}=1$
- Common choice: $\alpha=2, \beta=2$
- Naïve Bayes is a generative model

Logistic Regression vs. Nailve Bayes

- By modelling $P(X \mid Y)$ and $P(Y)$, we can generate new data points:

1. Sample a label $y \sim P(Y)$
2. Sample features $x_{d} \sim P\left(X_{d} \mid Y=y\right)$

- Logistic regression is a discriminative model
- By modelling $P(Y \mid X)$, we can only discriminate (or distinguish) between classes.
- Naïve Bayes and logistic regression form a generativediscriminative model pair
- Recall that under certain conditions, the Gaussian Naïve Bayes (GNB) decision boundary is linear
- If the Naïve Bayes assumption holds, then in the limit of infinite training data, GNB and logistic regression learn the same (linear) decision boundary!
- In general, Naïve Bayes performs well when data is scarce but logistic regression has lower asymptotic error.

Logistic Regression vs. Naïve Bayes
 (Ng and
 Jordan, 2001)

optdigits (0 's and 1's, continuous)

- Dotted line: logistic regression
- Solid line: Naïve Bayes

You should be able to...

- Write the generative story for Naive Bayes
- Create a new naïve Bayes classifier using your favorite probability distribution as the event model
- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of Bernoulli naïve Bayes

Naïve Bayes Learning Objectives

- Motivate the need for MAP estimation through the deficiencies of MLE
- Apply the principle of maximum a posteriori (MAP) estimation to learn the parameters of Bernoulli naïve Bayes
- Select a suitable prior for a model parameter
- Describe the tradeoffs of generative vs. discriminative models
- Implement Bernoulli naïve Bayes
- Describe how the variance affects whether a Gaussian naïve Bayes model will have a linear or nonlinear decision boundary

