10-301/601: Introduction to Machine Learning Lecture 17 - Naïve Bayes

Henry Chai 10/31/22

Front Matter

- Announcements:
 - HW6 released 10/27, due 11/4 at 11:59 PM
 - Only two late days allowed on HW6
 - HW6 recitation on Wednesday 11/2;
 next lecture is on Friday, 11/4
 - Exam 2 on 11/10
 - All topics between Lecture 8 and Lecture 17 (today's lecture) are in-scope
 - Exam 1 content may be referenced but will not be the primary focus of any question
 - Fill out the mid-semester survey, due 11/2
 - As of 9 AM this morning, only $228/405 \approx 56\%$

Q & A:

Who were you going to come dressed as?

Recall: Coin Flipping MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is

$$\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \rightarrow \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}$$

$$\rightarrow N_1 \left(1 - \hat{\phi} \right) = N_0 \hat{\phi} \rightarrow N_1 = \hat{\phi} (N_0 + N_1)$$

$$\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}$$

• where N_1 is the number of 1's in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of 0's

Poll Question 1:

After flipping your coin 5 times, what is the MLE of your coin?

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

The partial derivative of the log-likelihood is

$$\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \to \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}$$

$$\rightarrow N_1(1-\hat{\phi}) = N_0\hat{\phi} \rightarrow N_1 = \hat{\phi}(N_0 + N_1)$$

$$\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}$$

• where N_1 is the number of 1's in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of 0's

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the *posterior* distribution over the parameters

MLE finds
$$\hat{\Theta} = \underset{\Theta}{\operatorname{argmax}} P(D|\Theta)$$

MAP finds $\underset{MAP}{\Theta} = \underset{\Theta}{\operatorname{argmax}} P(D|\Theta)$

$$= \underset{G}{\operatorname{argmax}} P(D|\Theta) P(\Theta)$$

$$= \underset{G}{\operatorname{argmax}} P(D|\Theta) P(\Theta)$$

$$= \underset{G}{\operatorname{argmax}} P(D|\Theta) P(\Theta)$$

$$= \underset{G}{\operatorname{argmax}} \log P(D|\Theta) + \underset{G}{\operatorname{argmax}} P(O|\Theta)$$

Maximum a Posteriori (MAP) Estimation

1. Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*

2. Maximize the log-posterior of
$$\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$$

$$\ell_{MAP}(\theta) = \log p(\theta) + \sum_{i=1}^{N} \log p(x^{(i)}|\theta)$$

3. Solve in *closed form*: take partial derivatives, set to 0 and solve

Coin Flipping MAP

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

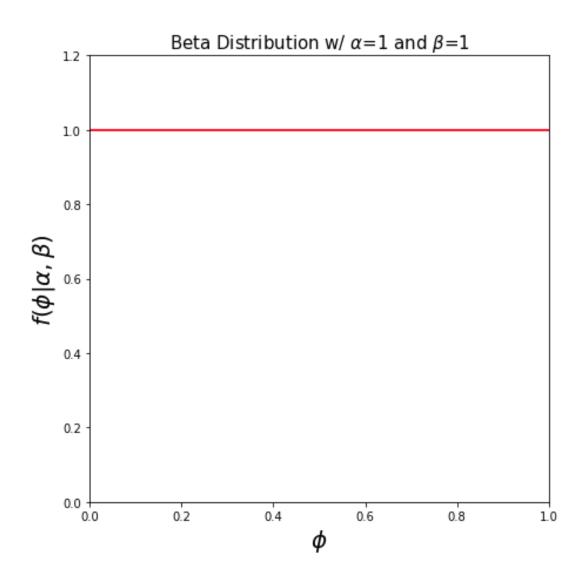
$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

• Assume a Beta prior over the parameter ϕ , which has pdf

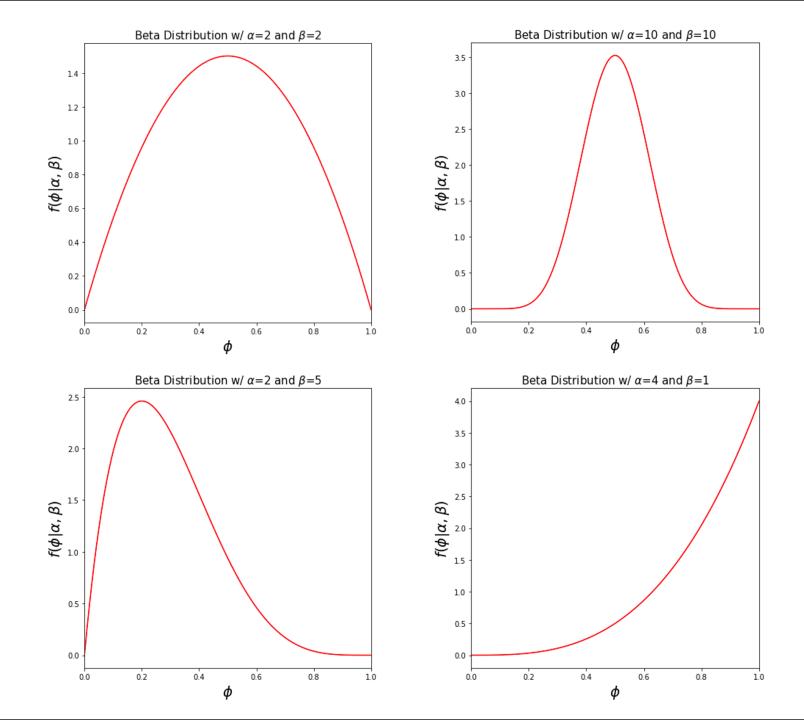
$$f(\phi|\alpha,\beta) = \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{B(\alpha,\beta)}$$

where $B(\alpha,\beta)=\int_0^1\phi^{\alpha-1}(1-\phi)^{\beta-1}d\phi$ is a normalizing constant to ensure the distribution integrates to 1

Beta Distribution



Beta Distribution



Why use this strange looking Beta prior?

The Beta distribution is the *conjugate* prior for the Bernoulli distribution!

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

• Assume a Beta prior over the parameter ϕ , which has pdf

$$f(\phi|\alpha,\beta) = \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{B(\alpha,\beta)}$$

where $B(\alpha,\beta)=\int_0^1\phi^{\alpha-1}(1-\phi)^{\beta-1}d\phi$ is a normalizing constant to ensure the distribution integrates to 1

Coin **Flipping** MAP

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-posterior is $\ell(\phi) = \log(P(\phi)) + \log(P(D(\phi))$ $= \frac{19}{8(d, \beta)} + \frac{1}{2} \frac{1}{\log 6} (1-6)^{1-x(1)}$ $= (\alpha - 1) \log \beta + (\beta - 1) \log (1 - \beta) - \log \beta \beta$ $+\sum_{i=1}^{n} (x^{(i)} \log \phi + (i-x^{(i)}) \log (i-\phi))$ = (x-1+N,) log \$ + (B-1+No) log (1-\$) $-\log B(\alpha, \beta)$ when Ni = # of is in D

Coin Flipping MAP

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the partial derivative of the log-posterior is

$$\frac{\partial \ell}{\partial \phi} = \frac{(\alpha - 1 + N_1)}{\phi} - \frac{(\beta - 1 + N_0)}{1 - \phi}$$

•

$$\to \hat{\phi}_{MAP} = \frac{(\alpha - 1 + N_1)}{(\beta - 1 + N_0) + (\alpha - 1 + N_1)}$$

- $\alpha 1$ is a "pseudocount" of the number of 1's (or heads) you've "observed"
- $\beta 1$ is a "pseudocount" of the number of 0's (or tails) you've "observed"

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=2$ and $\beta=5$, then

$$\phi_{MAP} = \frac{(2-1+10)}{(2-1+10)+(5-1+2)} = \frac{11}{17} < \frac{10}{12}$$

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=101$ and $\beta=101$, then

$$\phi_{MAP} = \frac{(101 - 1 + 10)}{(101 - 1 + 10) + (101 - 1 + 2)} = \frac{110}{212} \approx \frac{1}{2}$$

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1=10$) and two 0's or tails ($N_0=2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=1$ and $\beta=1$, then

$$\phi_{MAP} = \frac{(1-1+10)}{(1-1+10)+(1-1+2)} = \frac{10}{12} = \phi_{MLE}$$

MLE/MAP Learning Objectives

You should be able to...

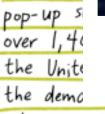
- Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random variables, expectation and variance, joint probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence
- State the principle of maximum likelihood estimation and explain what it tries to accomplish
- State the principle of maximum a posteriori estimation and explain why we use it
- Derive the MLE or MAP parameters of a simple model in closed form

Text Data

- https://www.nytimes.com/20
 22/10/13/movies/halloweenends-review.html
- https://www.nytimes.com/20 22/10/20/business/the-spiritof-halloween.html
- https://www.theonion.com/b iden-issues-urgent-warningfor-americans-to-decide-wha-1849597566

'Halloween Ends' Review: It Probably Doesn't

David Gordon Green wraps up his reboot trilogy for a horror franchise that never stays dead for long.



WASHINGTON—In an address to the nation in which he warned that preparations for the upcoming holiday must begin at once, President Joe Biden on Friday urged Americans to decide now what they were going to be for Halloween. "It is vital that we start making our way to a Spirit Halloween store or browsing online retailers so that we have a plan in place come Oct. 31,"

who are expected to spend an estimated \$10.6 billion on the ghoulish holiday, according to the National Retail Federation.

Text Data

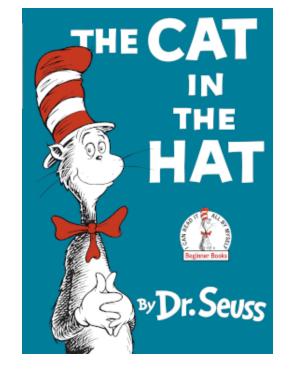


10/31/22 **19**

x_1	x_2	x_3	x_4	x_5	x_6	у
("hat")	("cat")	("dog")	("fish")	("mom")	("dad")	(Dr. Seuss)

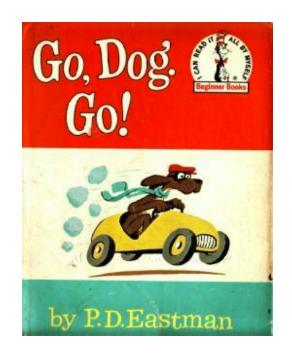
<i>x</i> ₁	x ₂	x ₃	x ₄	x ₅	<i>x</i> ₆	<i>y</i>
("hat")	("cat")	("dog")	("fish")	("mom")	("dad")	(Dr. Seuss)
1	1	0	0	0	0	1

The Cat in the Hat (by Dr. Seuss)



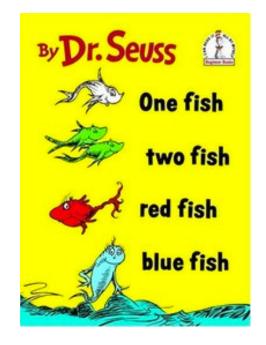
<i>x</i> ₁ ("hat")	x ₂ ("cat")	x ₃ ("dog")	x ₄ ("fish")	x ₅ ("mom")	x ₆ ("dad")	<i>y</i> (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0

Go, Dog. Go! (by P. D. Eastman)



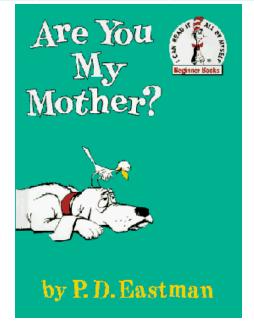
<i>x</i> ₁ ("hat")	x ₂ ("cat")	x ₃ ("dog")	x_4 ("fish")	x ₅ ("mom")	x ₆ ("dad")	<i>y</i> (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1

One Fish, Two Fish, Red Fish, Blue Fish (by Dr. Seuss)



<i>x</i> ₁ ("hat")	x ₂ ("cat")	x ₃ ("dog")	x ₄ ("fish")	x ₅ ("mom")	x ₆ ("dad")	<i>y</i> (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0

Are You My Mother? (by P. D. Eastman)



Recall: Building a Probabilistic Classifier

- Define a decision rule
 - Given a test data point x', predict its label \hat{y} using the posterior distribution P(Y = y | X = x')
 - Common choice: $\hat{y} = \underset{y}{\operatorname{argmax}} P(Y = y | X = x')$
- Model the posterior distribution
 - Option 1 Model P(Y|X) directly as some function of X (recall: logistic regression)
 - Option 2 Use Bayes' rule (today!):

$$P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} \propto P(X|Y) P(Y)$$

How hard is modelling P(X|Y)?

- Define a decision rule
 - Given a test data point x', predict its label \hat{y} using the posterior distribution P(Y = y | X = x')
 - Common choice: $\hat{y} = \underset{y}{\operatorname{argmax}} P(Y = y | X = x')$
- Model the posterior distribution
 - Option 1 Model P(Y|X) directly as some function of X (recall: logistic regression)
 - Option 2 Use Bayes' rule (today!):

$$P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} \propto P(X|Y) P(Y)$$

How hard is modelling P(X|Y)?

<i>x</i> ₁ ("hat")	x ₂ ("cat")	<i>x</i> ₃ ("dog")	x ₄ ("fish")	x ₅ ("mom")	<i>x</i> ₆ ("dad")	P(X Y=1)
0	0	0	0	0	0	$ heta_1$
1	0	0	0	0	0	$ heta_2$
1	1	0	0	0	0	$ heta_3$
1	0	1	0	0	0	$ heta_4$

Henry Chai - 6/6/22

Naïve Bayes Assumption

• **Assume** features are conditionally independent given the label: $P(\chi_1 \cap \chi_2 \dots \cap \chi_D)$

$$P(X|Y) = \prod_{d=1} P(X_d|Y)$$

- Pros:
 - Significantly reduce our computational costs - Helps to combat overfitting
- Cons:

P(YIX) & P(XIY)P(Y)

Recipe for Naïve Bayes

- Define a model and model parameters
 - Make the naïve Bayes assumption
 - Assume independent, identically distributed (iid) data
 - Parameters: $\pi = P(Y = 1)$, $\theta_{d,y} = P(X_d = 1|Y = y)$
- Write down an objective function
 - Maximize the log-likelihood

Excapte: 2 latels
6 features
12 parameter

- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Setting the Parameters via MLE

$$\ell_{\mathcal{D}}(\pi, \theta) = \log P(\mathcal{D} = \{x^{(1)}, y^{(1)}, ..., x^{(N)}, y^{(N)}\} | \pi, \theta)$$

$$= \log \frac{N}{1} P(x^{(i)}, y^{(i)}, \pi, \theta) = P(A \cap B)P(B)$$

$$= \log \frac{N}{1} P(x^{(i)}, y^{(i)}, \theta) P(y^{(i)}, \pi)$$

$$= \sum_{i=1}^{N} \sum_{d=1}^{N} \log P(x^{(i)}, y^{(i)}, \theta) P(y^{(i)}, \pi)$$

Setting the Parameters via MLE

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$

$$\hat{\pi} = \frac{N_{Y=1}}{N}$$

- N = # of data points
- $N_{Y=1}$ = # of data points with label 1
- Binary features

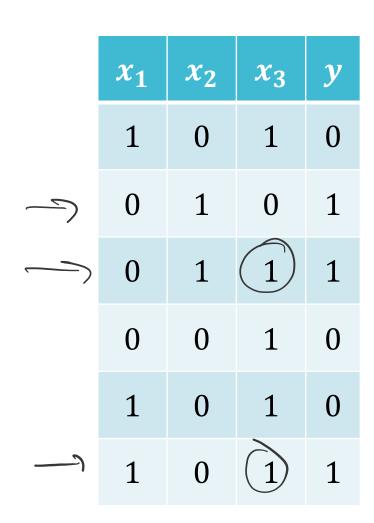
•
$$X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y})$$

$$\hat{\theta}_{d,y} = N_{Y=y,X_d=1} / N_{Y=y}$$

- $N_{Y=y} = \#$ of data points with label y
- $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$

Poll Question 2: Given this dataset, what is the MLE of π ?

Poll Question 3: Given this dataset, what is the MLE of $\theta_{3,1}$?



A. 0/6B. 1/6 C. 2/6 \rightarrow D. 3/6 \rightarrow E. 4/6 = $\frac{2}{3}$ F. 5/6 G. 6/6 H. 7/6 (TOXIC)

Bernoulli Naïve Bayes

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$
 - $\hat{\pi} = \frac{N_{Y=1}}{N}$
 - N = # of data points
 - $N_{Y=1}$ = # of data points with label 1
- Binary features
 - $X_d | Y = y \sim \text{Bernoulli}(\theta_{d,y})$
 - $\hat{\theta}_{d,y} = \frac{N_{Y=y,X_d=1}}{N_{Y=y}}$
 - $N_{Y=y}$ = # of data points with label y
 - $N_{Y=y, X_d=1}$ = # of data points with label y and feature $X_d=1$

Multinomial Naïve Bayes

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$
 - $\hat{\pi} = N_{Y=1}/N$
 - N = # of data points
 - $N_{Y=1}$ = # of data points with label 1
- Discrete features (X_d can take on one of K possible values)

•
$$X_d | Y = y \sim \text{Categorical}(\theta_{d,1,y}, ..., \theta_{d,K-1,y})$$

$$\bullet \ \widehat{\theta}_{d,k,y} = \frac{N_{Y=y,X} d^{-k}}{N_{Y=y}}$$

- $N_{Y=y}$ = # of data points with label y
- $N_{Y=y, X_d=k}$ = # of data points with label y and feature $X_d=k$

Gaussian Naïve Bayes

- Binary label
 - $Y \sim \text{Bernoulli}(\pi)$

•
$$\hat{\pi} = {}^{N_{Y=1}}/_{N}$$

- N = # of data points
- $N_{Y=1}$ = # of data points with label 1
- Real-valued features

•
$$X_d | Y = y \sim \text{Gaussian}(\mu_{d,y}, \sigma_{d,y}^2)$$

$$\begin{cases} \cdot \hat{\mu}_{d,y} = \frac{1}{N_{Y=y}} \sum_{n:y^{(n)}=y} x_d^{(n)} \\ \cdot \hat{\sigma}_{d,y}^2 = \frac{1}{N_{Y=y}} \sum_{n:y^{(n)}=y} \left(x_d^{(n)} - \hat{\mu}_{d,y} \right)^2 \\ \cdot N_{Y=y} = \text{# of data points with label } y \end{cases}$$

Multiclass Gaussian Naïve Bayes

- Discrete label (Y can take on one of M possible values)
 - $Y \sim \text{Categorical}(\pi_1, ..., \pi_M)$

•
$$\hat{\pi}_m = \frac{N_{Y=m}}{N}$$

- N = # of data points
- $N_{Y=m}$ = # of data points with label m
- Real-valued features
 - $X_d | Y = y \sim \text{Gaussian}(\mu_{d,y}, \sigma_{d,y}^2)$

•
$$\hat{\mu}_{d,y} = \frac{1}{N_{Y=y}} \sum_{n:y^{(n)}=y} x_d^{(n)}$$

•
$$\hat{\sigma}_{d,y}^2 = \frac{1}{N_{Y=y}} \sum_{n:y^{(n)}=y} \left(x_d^{(n)} - \hat{\mu}_{d,y} \right)^2$$

• $N_{Y=y}$ = # of data points with label y

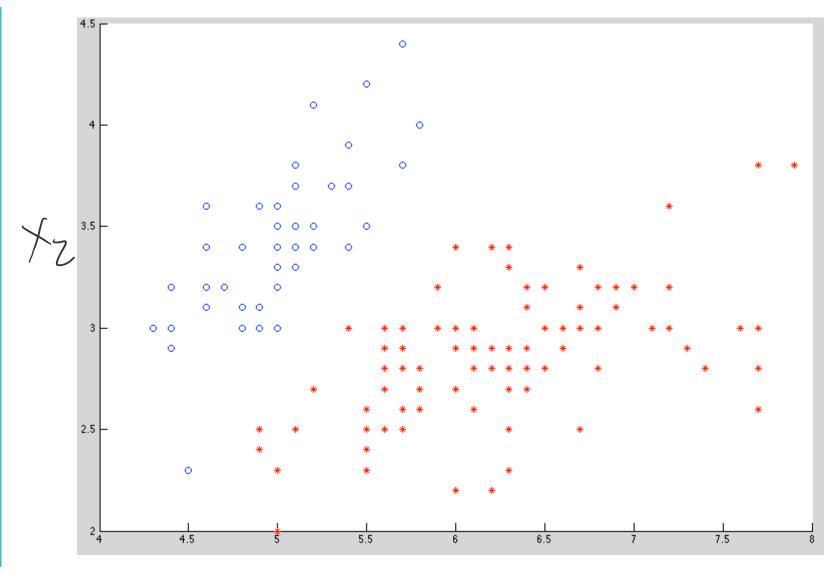
Visualizing Gaussian Naïve Bayes

• Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

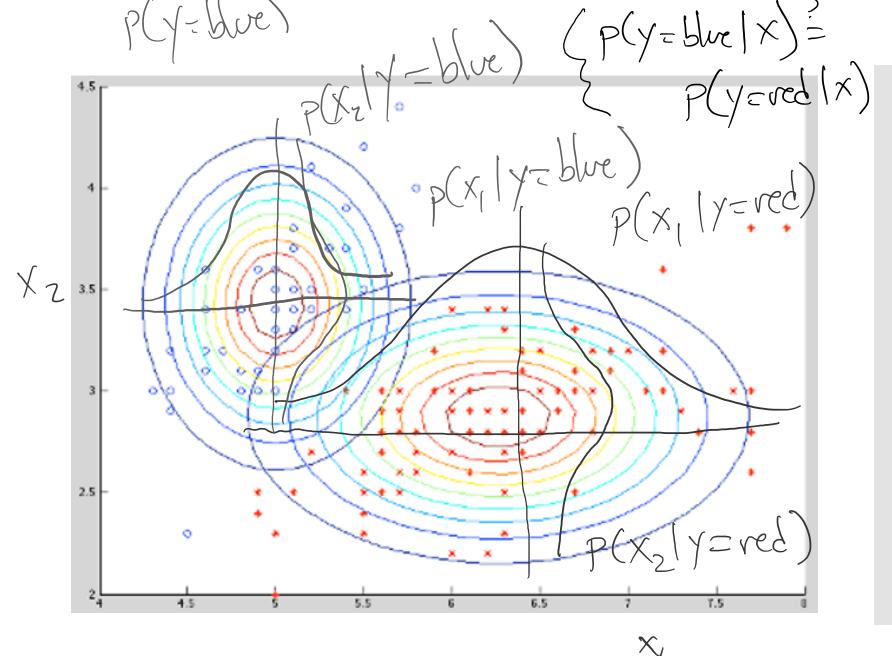
Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

Deleted two of the four features, so that input space is 2D

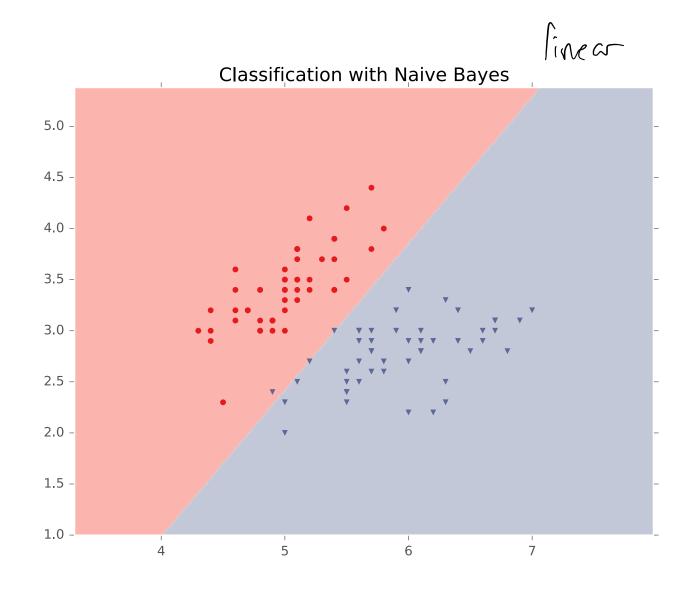
Visualizing Gaussian Naïve Bayes (2 classes)



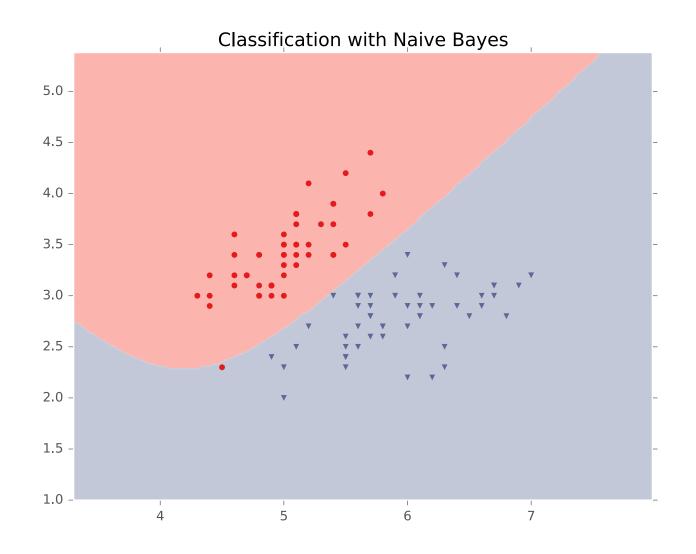
Visualizing
Gaussian
Naïve
Bayes
(2 classes)



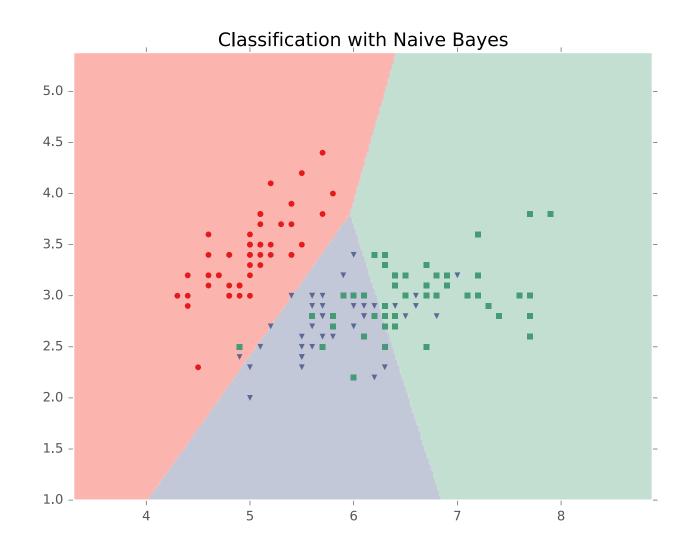
Visualizing Gaussian Naïve Bayes (2 classes, equal variances)



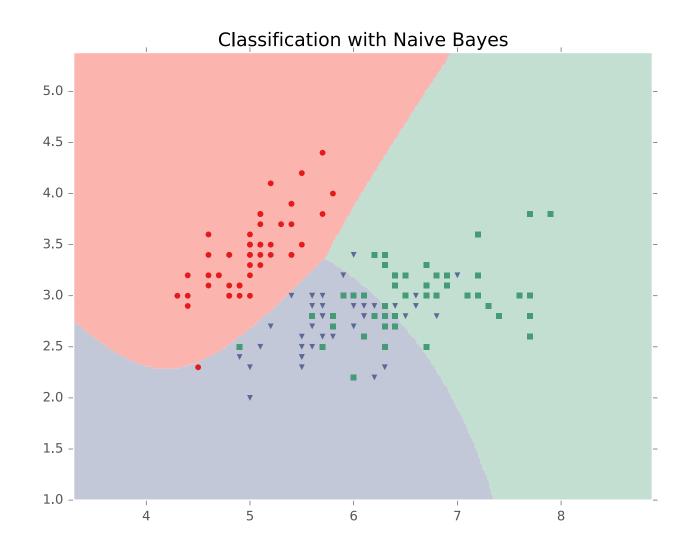
Visualizing
Gaussian
Naïve
Bayes
(2 classes,
learned
variances)



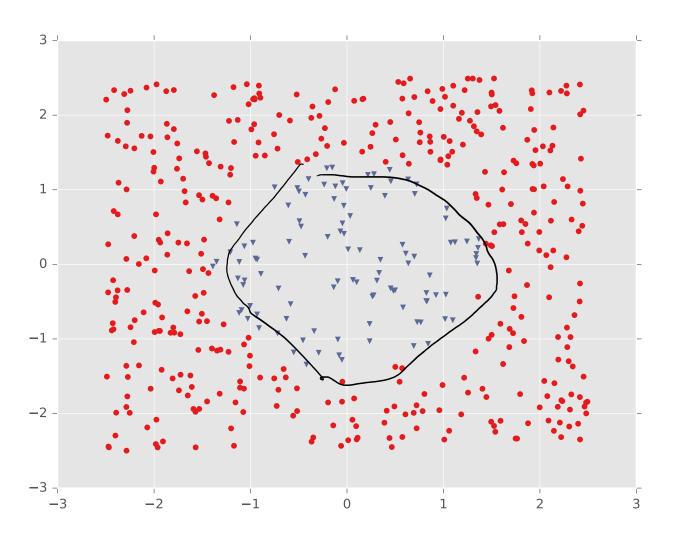
Visualizing
Gaussian
Naïve
Bayes
(3 classes,
equal
variances)



Visualizing
Gaussian
Naïve
Bayes
(3 classes,
learned
variances)

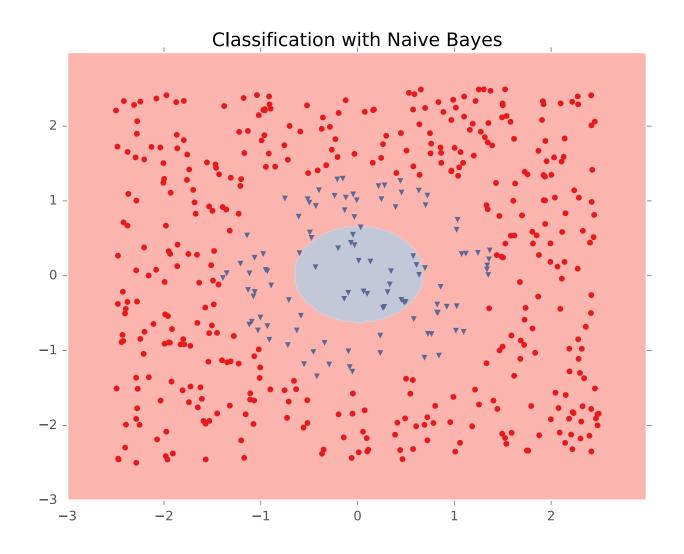


Visualizing
Gaussian
Naïve
Bayes
(2 classes,
learned
variances)



p (red) » p(lure)

Visualizing
Gaussian
Naïve
Bayes
(2 classes,
learned
variances)



Naïve Bayes Learning Objectives

You should be able to...

- Write the generative story for Naive Bayes
- Create a new naïve Bayes classifier using your favorite probability distribution as the event model
- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of Bernoulli naïve Bayes
- Motivate the need for MAP estimation through the deficiencies of MLE
- Apply the principle of maximum a posteriori (MAP) estimation to learn the parameters of Bernoulli naïve Bayes
- Select a suitable prior for a model parameter
- Describe the tradeoffs of generative vs. discriminative models
- Implement Bernoulli naïve Bayes
- Describe how the variance affects whether a Gaussian naïve
 Bayes model will have a linear or nonlinear decision boundary