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Front	Matter

� Announcements:

� HW6	released	10/27,	due	11/4	at	11:59	PM

� Only	two	late	days	allowed	on	HW6

� HW6	recitation	on	Wednesday	11/2;	
next	lecture	is	on	Friday,	11/4

� Exam	2	on	11/10

� All	topics	between	Lecture	8	and	Lecture	17	
(today’s	lecture)	are	in-scope

� Exam	1	content	may	be	referenced	but	will	not	
be	the	primary	focus	of	any	question

� Fill	out	the	mid-semester	survey,	due	11/2

� As	of	9	AM	this	morning,	only	228/405	≈ 56%
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Q	&	A:

Who	were	you	
going	to	come	
dressed	as?	
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Recall:
Coin	
Flipping
MLE
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� A	Bernoulli	random	variable	takes	value	1 (or	heads)	with	
probability	# and	value	0 (or	tails)	with	probability	1 − #

� The	pmf of	the	Bernoulli	distribution	is	
% &|# = #! 1 − # "#!

� The	partial	derivative	of	the	log-likelihood	is
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� where	+" is	the	number	of	1’s	in	 & " , … , & % and	+$ is	
the	number	of	0’s



Poll	Question	1:

After	flipping	your	coin	
5	times,	what	is	the	MLE	
of	your	coin?	
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� A	Bernoulli	random	variable	takes	value	1 (or	heads)	with	
probability	# and	value	0 (or	tails)	with	probability	1 − #

� The	pmf of	the	Bernoulli	distribution	is	
% &|# = #! 1 − # "#!

� The	partial	derivative	of	the	log-likelihood	is
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)# → +" 1 − ,# = +$ ,# → +" = ,# +$ ++"
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+$ ++"
� where	+" is	the	number	of	1’s	in	 & " , … , & % and	+$ is	
the	number	of	0’s

A. 0/5
B. 1/5
C. 2/5
D. 3/5
E. 2/5	(TOXIC)
F. 4/5
G. 5/5



� Insight:	sometimes	we	have	prior information	we	want	
to	incorporate	into	parameter	estimation

� Idea:	use	Bayes	rule	to	reason	about	the	posterior
distribution	over	the	parameters

�MLE	finds	 ,3 = argmax
&

% 9 3

�MAP	finds	 ,3 = argmax
&

% 3 9

MAP	finds	 ,3 = argmax
&

% 9 3 % 3 /% 9

MAP finds ,3 = argmax
&

% 9 3 % 3 /% 9

MAP finds ,3. = argmax
&

log % 9 3 + log % 3

Maximum	a	
Posteriori	
(MAP)	
Estimation
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likelihood prior

log-posterior



1. Specify	the	generative	story,	i.e.,	the	data	generating	
distribution,	including	a	prior	distribution	

� How	on	earth	do	we	pick	a	prior?

2. Maximize	the	log-posterior	of	9 = & " , … , & %

ℓ'() 3 = log % 3 +>
*+"

%

log % & * |3

3. Solve	in	closed	form:	take	partial	derivatives,											
set	to	0	and	solve
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Maximum	a	
Posteriori	
(MAP)	
Estimation



Coin	
Flipping
MAP
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� A	Bernoulli	random	variable	takes	value	1 (or	heads)	with	
probability	# and	value	0 (or	tails)	with	probability	1 − #

� The	pmf of	the	Bernoulli	distribution	is	
% &|# = #! 1 − # "#!

� Assume	a	Beta	prior	over	the	parameter	#,	which	has	pdf

? # @, A =
#,#" 1 − # -#"

Β @, A

where	Β @, A = ∫$
"#,#" 1 − # -#"D# is	a	normalizing	

constant	to	ensure	the	distribution	integrates	to	1



Beta	
Distribution
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Beta	
Distribution
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Why	use	this	
strange	looking	
Beta	prior?
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� A	Bernoulli	random	variable	takes	value	1 (or	heads)	with	
probability	# and	value	0 (or	tails)	with	probability	1 − #

� The	pmf of	the	Bernoulli	distribution	is	
% &|# = #! 1 − # "#!

� Assume	a	Beta	prior	over	the	parameter	#,	which	has	pdf

? # @, A =
#,#" 1 − # -#"

Β @, A

where	Β @, A = ∫$
"#,#" 1 − # -#"D# is	a	normalizing	

constant	to	ensure	the	distribution	integrates	to	1

The	Beta	
distribution	is	
the	conjugate	
prior	for	the	
Bernoulli	
distribution!



Coin	
Flipping
MAP
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� Given	+ iid	samples	 & " , … , & % ,	the	log-posterior	is

ℓ # = log ? # @, A +>
.+"

%

log % & . #

ℓ # = log
#,#" 1 − # -#"

Β @, A
+>
.+"

%

log#! ! 1 − # "#! !
ℓ # = @ − 1 log# + A − 1 log 1 − # − log Β @, A

ℓ # = +>
.+"

%

& . log# + 1 − & . log 1 − #

ℓ # = @ − 1 + +" log# + A − 1 + +$ log 1 − #
ℓ # = − logΒ @, A



Coin	
Flipping
MAP
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� Given	+ iid	samples	 & " , … , & % ,	the	partial	derivative	of	
the	log-posterior	is
)ℓ
)# =

@ − 1 + +"
# −

A − 1 + +$
1 − #

⋮

→ ,#'() =
@ − 1 + +"

A − 1 + +$ + @ − 1 + +"
�@ − 1 is	a	“pseudocount”	of	the	number	of	1’s	(or	heads)	
you’ve	“observed”	

�A − 1 is	a	“pseudocount”	of	the	number	of	0’s	(or	tails)	
you’ve	“observed”



Coin	
Flipping
MAP:
Example
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� Suppose	9 consists	of	ten	1’s	or	heads	(+" = 10)	and					
two	0’s	or	tails	(+$ = 2):

#'/0 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	@ = 2 and	A = 5,	then

#'() =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2) =
11
17 <

10
12



Coin	
Flipping
MAP:
Example

10/31/22 15

� Suppose	9 consists	of	ten	1’s	or	heads	(+" = 10)	and					
two	0’s	or	tails	(+$ = 2):

#'/0 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	@ = 101 and	A = 101,	then

#'() =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2) =
110
212 ≈

1
2



Coin	
Flipping
MAP:
Example
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� Suppose	9 consists	of	ten	1’s	or	heads	(+" = 10)	and					
two	0’s	or	tails	(+$ = 2):

#'/0 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	@ = 1 and	A = 1,	then

#'() =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2) =
10
12 = #'/0



MLE/MAP	
Learning	
Objectives

You	should	be	able	to…
� Recall	probability	basics,	including	but	not	limited	to:	
discrete	and	continuous	random	variables,	probability	
mass	functions,	probability	density	functions,	events	vs.	
random	variables,	expectation	and	variance,	joint	
probability	distributions,	marginal	probabilities,	
conditional	probabilities,	independence,	conditional	
independence

� State	the	principle	of	maximum	likelihood	estimation	and	
explain	what	it	tries	to	accomplish

� State	the	principle	of	maximum	a	posteriori	estimation	
and	explain	why	we	use	it

� Derive	the	MLE	or	MAP	parameters	of	a	simple	model	in	
closed	form

1710/31/22
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• https://www.nytimes.com/20
22/10/13/movies/halloween-
ends-review.html

• https://www.nytimes.com/20
22/10/20/business/the-spirit-
of-halloween.html

• https://www.theonion.com/b
iden-issues-urgent-warning-
for-americans-to-decide-wha-
1849597566

Text Data

https://www.nytimes.com/2022/10/13/movies/halloween-ends-review.html
https://www.nytimes.com/2022/10/20/business/the-spirit-of-halloween.html
https://www.theonion.com/biden-issues-urgent-warning-for-americans-to-decide-wha-1849597566
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Text Data



Bag-of-Words	
Model

1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”)

2
(Dr.	Seuss)
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The	Cat in	the	Hat
(by	Dr.	Seuss)

Source:	https://en.wikipedia.org/wiki/The_Cat_in_the_Hat#/media/File:The_Cat_in_the_Hat.png

1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”)

2
(Dr.	Seuss)

1 1 0 0 0 0 1

Bag-of-Words	
Model

https://en.wikipedia.org/wiki/The_Cat_in_the_Hat
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Go,	Dog.	Go!	
(by	P.	D.	Eastman)

Source:	https://en.wikipedia.org/wiki/Go,_Dog._Go!#/media/File:Go_Dog_Go.jpg

1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”)

2
(Dr.	Seuss)

1 1 0 0 0 0 1
0 0 1 0 0 0 0

Bag-of-Words	
Model

https://en.wikipedia.org/wiki/Go,_Dog._Go!


10/31/22 23Source:	https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish#/media/File:One_Fish_Two_Fish_Red_Fish_Blue_Fish_(cover_art).jpg

1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”)

2
(Dr.	Seuss)

1 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 1

One	Fish,	Two	Fish,	
Red	Fish,	Blue	Fish

(by	Dr.	Seuss)

Bag-of-Words	
Model

https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish
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1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”)

2
(Dr.	Seuss)

1 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 1

0 0 0 0 1 0 0

Are	You	My	Mother?
(by	P.	D.	Eastman)

Source:	https://en.wikipedia.org/wiki/Are_You_My_Mother%3F#/media/File:Areyoumymother.gif

Bag-of-Words	
Model

https://en.wikipedia.org/wiki/Are_You_My_Mother%3F


Recall:	
Building	a	
Probabilistic	
Classifier
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� Define	a	decision	rule
� Given	a	test	data	point	L3,	predict	its	label	 MN using	
the	posterior	distribution	O P = N Q = L′

� Common	choice:	 MN = argmax
4

O P = N Q = L′

�Model	the	posterior	distribution
� Option	1	- Model	O P Q directly	as	some	function	
of	Q (recall:	logistic	regression)	

� Option	2	- Use	Bayes’	rule	(today!):

O P Q =
O Q P O P

O Q ∝ O Q P O P
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How	hard	is	
modelling	! " # ?

� Define	a	decision	rule
� Given	a	test	data	point	L3,	predict	its	label	 MN using	
the	posterior	distribution	O P = N Q = L′

� Common	choice:	 MN = argmax
4

O P = N Q = L′

�Model	the	posterior	distribution
� Option	1	- Model	O P Q directly	as	some	function	
of	Q (recall:	logistic	regression)	

� Option	2	- Use	Bayes’	rule	(today!):

O P Q =
O Q P O P

O Q ∝ O Q P O P



1!
(“hat”)

1"
(“cat”)

1#
(“dog”)

1$
(“fish”)

1%
(“mom”)

1&
(“dad”) 5(7|9 = 1) 5 7 9 = 0

0 0 0 0 0 0 !! !"#
1 0 0 0 0 0 !$ !"%
1 1 0 0 0 0 !& !""
1 0 1 0 0 0 !# !"'
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 1 1 1 1 1 1 −%()!"& !( 1 − %()"#!$" !(

Henry	Chai	- 6/6/22 27

How	hard	is	
modelling	! " # ?



Naïve	Bayes	
Assumption

� Assume features	are	conditionally	independent	given	
the	label:

O Q P =T
>+"

?

O Q> P

� Pros:
� Significantly reduces	computational	complexity	

� Also	reduces	model	complexity,	combats	overfitting

� Cons:
� Is	a	strong,	often	illogical	assumption	

�We’ll	see	a	relaxed	version	of	this	later	in	the	
semester	when	we	discuss	Bayesian	networks
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Recipe	for	
Naïve	Bayes

� Define	a	model	and	model	parameters
�Make	the	naïve	Bayes	assumption
� Assume	independent,	identically	distributed	(iid)	data
� Parameters:	2 = O P = 1 ,	3>,4 = O Q> = 1 P = N

�Write	down	an	objective	function
�Maximize	the	log-likelihood

� Optimize	the	objective	w.r.t. the	model	parameters
� Solve	in closed	form:	take	partial	derivatives,	set	to	0	
and	solve
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ℓ* ', ) = log. / = 0 ! , 1 ! , … , 0 + , 1 + ', )
ℓ* ', ) = log3,)!+ . 0 , , 1 , ', ) = log3,)!+ . 0 , 1 , , ) . 1 , '
ℓ* ', ) = log3,)!+ 3-)!. . 4-, 1 , , !-,!, !-,0 . 1 , '
ℓ* ', ) = %,)!+ %-)!. log . 4-, 1 , , !-,!, !-,0 + log. 1 , '
ℓ* ', ) = %,:2 ! )! %-)!. log . 4-, !-,!
ℓ* ', ) + %,:2 ! )0 %-)!. log . 4-, !-,0 +%,)!+ log . 1 , '

10/31/22 30

Setting	the	
Parameters
via	MLE



Setting	the	
Parameters
via	MLE
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� Binary	label
� P ∼ Bernoulli 2
� M2 = [%"#$

%
� + = #	of	data	points
� +A+" =	#	of	data	points	with	label	1

� Binary	features
� Q>|P = N ∼ Bernoulli 3>,4
� ,3>,4 = [%"#%, '(#$

%"#%
� +A+4 =	#	of	data	points	with	label	N
� +A+4, B(+" = #	of	data	points	with	label	N and	
feature	Q> = 1



Poll	Question	2:
Given	this	
dataset,	what	is	
the	MLE	of	!?
Poll	Question	3:
Given	this	
dataset,	what	is	
the	MLE	of	"!,#?

LC LD LE \

1 0 1 0

0 1 0 1

0 1 1 1

0 0 1 0

1 0 1 0

1 0 1 1
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A. 0/6
B. 1/6
C. 2/6
D. 3/6
E. 4/6
F. 5/6
G. 6/6
H. 7/6	(TOXIC)



Bernoulli
Naïve	
Bayes

10/31/22 33

� Binary	label
� P ∼ Bernoulli 2
� M2 = [%"#$

%
� + = #	of	data	points
� +A+" =	#	of	data	points	with	label	1

� Binary	features
� Q>|P = N ∼ Bernoulli 3>,4
� ,3>,4 = [%"#%, '(#$

%"#%
� +A+4 =	#	of	data	points	with	label	N
� +A+4, B(+" = #	of	data	points	with	label	N and	
feature	Q> = 1



Multinomial
Naïve	
Bayes
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� Binary	label
� P ∼ Bernoulli 2
� M2 = [%"#$

%
� + = #	of	data	points
� +A+" =	#	of	data	points	with	label	1

� Discrete	features	(Q> can	take	on	one	of	] possible	values)
� Q>|P = N ∼ Categorical 3>,",4, … , 3>,F#",4
� ,3>,G,4 = [%"#%, '(#)

%"#%
� +A+4 =	#	of	data	points	with	label	N
� +A+4, B(+G = #	of	data	points	with	label	N and	
feature	Q> = a



Gaussian
Naïve	
Bayes
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� Binary	label
� P ∼ Bernoulli 2
� M2 = [%"#$

%
� + = #	of	data	points
� +A+" =	#	of	data	points	with	label	1

� Real-valued	features	
� Q>|P = N ∼ Gaussian d>,4, e>,4H

� d̂>,4 =
"

%"#%∑.:4 ! +4 &>.
� ̂6>,4H =	 "

%"#%∑.:4 ! +4 &>
. − d̂>,4

H

� +A+4 =	#	of	data	points	with	label	N



Multiclass
Gaussian
Naïve	
Bayes
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� Discrete	label	(P can	take	on	one	of	h possible	values)
� P ∼ Categorical 2", … , 2'
� M2J = [%"#*

%
� + = #	of	data	points
� +A+J =	#	of	data	points	with	label	i

� Real-valued	features	
� Q>|P = N ∼ Gaussian d>,4, e>,4H

� d̂>,4 =
"

%"#%∑.:4 ! +4 &>.
� ̂6>,4H =	 "

%"#%∑.:4 ! +4 &>
. − d̂>,4

H

� +A+4 =	#	of	data	points	with	label	N



Visualizing
Gaussian
Naïve	
Bayes

� Fisher	(1936)	used	150	measurements	of	flowers	from	3	
different	species:	Iris	setosa (0),	Iris	virginica	(1),	Iris	
versicolor	(2)	collected	by	Anderson	(1936)
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Species Sepal	Length Sepal	Width
0 4.3 3.0
0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Deleted	two	of	the	
four	features,	so	that	
input	space	is	2D



Visualizing
Gaussian
Naïve	
Bayes
(2	classes)

Figure	courtesy	of	William	Cohen 3810/31/22



Visualizing
Gaussian
Naïve	
Bayes
(2	classes)

Figure	courtesy	of	William	Cohen 3910/31/22



Visualizing
Gaussian
Naïve	
Bayes
(2	classes,	
equal	
variances)

Figure	courtesy	of	Matt	Gormley 4010/31/22



Visualizing
Gaussian
Naïve	
Bayes
(2	classes,	
learned	
variances)

Figure	courtesy	of	Matt	Gormley 4110/31/22



Visualizing
Gaussian
Naïve	
Bayes
(3	classes,	
equal	
variances)

Figure	courtesy	of	Matt	Gormley 4210/31/22



Visualizing
Gaussian
Naïve	
Bayes
(3	classes,	
learned	
variances)

Figure	courtesy	of	Matt	Gormley 4310/31/22



Visualizing
Gaussian
Naïve	
Bayes
(2	classes,	
learned	
variances)

Figure	courtesy	of	Matt	Gormley 4410/31/22



Visualizing
Gaussian
Naïve	
Bayes
(2	classes,	
learned	
variances)

Figure	courtesy	of	Matt	Gormley 4510/31/22



Naïve	Bayes	
Learning	
Objectives

You	should	be	able	to…
�Write	the	generative	story	for	Naive	Bayes
� Create	a	new	naïve	Bayes	classifier	using	your	favorite	
probability	distribution	as	the	event	model

� Apply	the	principle	of	maximum	likelihood	estimation	(MLE)	
to	learn	the	parameters	of	Bernoulli	naïve	Bayes

�Motivate	the	need	for	MAP	estimation	through	the	
deficiencies	of	MLE

� Apply	the	principle	of	maximum	a	posteriori	(MAP)	estimation	
to	learn	the	parameters	of	Bernoulli	naïve	Bayes

� Select	a	suitable	prior	for	a	model	parameter
� Describe	the	tradeoffs	of	generative	vs.	discriminative	models
� Implement	Bernoulli	naïve	Bayes
� Describe	how	the	variance	affects	whether	a	Gaussian	naïve	
Bayes	model	will	have	a	linear	or	nonlinear	decision	boundary 5310/31/22


