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� Let ℋ be the set of all conjunctions over 𝑀 Boolean 

variables, 𝒙 ∈ 0,1 !; examples of conjunctions are

� ℎ 𝒙 = 𝑥" 1 − 𝑥# 𝑥$𝑥"%
� ℎ 𝒙 = 1 − 𝑥& 1 − 𝑥$ 𝑥'

� Assuming 𝑐∗ ∈ ℋ, if 𝑀 = 10, 𝜖 = 0.1, and 𝛿 = 0.01, at 
least how many labelled examples do we need to satisfy 

the PAC criterion using Theorem 1?

A. 1 (TOXIC)

B. 10 2 ln 10 + ln 100 ≈ 92
C. 10 3 ln 10 + ln 100 ≈ 116
D. 10 10 ln 2 + ln 100 ≈ 116
E. 10 10 ln 3 + ln 100 ≈ 156

F. 100 2 ln 10 + ln 10 ≈ 691
G. 100 3 ln 10 + ln 10 ≈ 922
H. 100 10 ln 2 + ln 10 ≈ 924
I. 100 10 ln 3 + ln 10 ≈ 1329

Q & A:

Why is the 
answer C? 

Great question, 
it’s not! It’s E 
(my bad)



Q & A:

How does the 
statistical 
learning theory 
corollary follow 
from this 
theorem?
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
<𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Q & A:

How does the 
statistical 
learning theory 
corollary follow 
from this 
theorem?
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 =
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
<𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Solving for 𝜖 gives... 



Q & A:

How does the 
statistical 
learning theory 
corollary follow 
from this 
theorem?
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with <𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Front Matter

� Announcements
� HW5 released 10/13, due 10/27 (tomorrow) at 11:59 PM

� HW6 released 10/27 (tomorrow), due 11/4 at 11:59 PM

� Only two late days allowed on HW6

� Exam 2 on 11/10, two weeks from tomorrow (more 
details to follow)

� All topics between Lecture 8 and Lecture 17 (next 
Monday’s lecture) are in-scope

� Exam 1 content may be referenced but will not be 
the primary focus of any question

� Exam 3 scheduled

� Thursday, December 15th from 9:30 AM to 11:30 AM

� Sign up for peer tutoring! See Piazza for more details 610/26/22

https://piazza.com/class/l6xoswmdxo10m/post/985


Recall -
Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
<𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Recall -
Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖#

ln ℋ + ln
2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − <𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points
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What happens 
when ℋ = ∞?

� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖#

ln ℋ + ln
2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − <𝑅 ℎ ≤ 𝜖

� Insight: ℋ measures how complex our hypothesis set is

� Idea: define a different measure of hypothesis set complexity



Labellings

� Given some finite set of data points 𝑆 = 𝒙 " , … , 𝒙 !

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling

� ℎ 𝒙 " , … , ℎ 𝒙 ! is a vector of 𝑀 +1’s and -1’s

� Important note: our discussion of PAC learning 
assumes binary classification 

� Given 𝑆 = 𝒙 " , … , 𝒙 ! , each hypothesis in ℋ
induces a labelling but not necessarily a unique labelling

� The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 " , … , ℎ 𝒙 ! ℎ ∈ ℋ
1010/26/22



Example: Labellings

�ℋ = {ℎ", ℎ#, ℎ&}

11

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $

10/26/22



ℋ = {ℎ", ℎ#, ℎ&}

ℎ" 𝒙 " , ℎ" 𝒙 # , ℎ" 𝒙 & , ℎ" 𝒙 $

� = −1,+1,−1,+1

12

ℎ"

𝒙 "

𝒙 #

𝒙 !

𝒙 $

Example: Labellings
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Example: Labellings

13

ℎ!

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ", ℎ#, ℎ&}

ℎ# 𝒙 " , ℎ# 𝒙 # , ℎ# 𝒙 & , ℎ# 𝒙 $

� = −1,+1,−1,+1
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Example: Labellings

14

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $

ℋ = {ℎ", ℎ#, ℎ&}

ℎ& 𝒙 " , ℎ& 𝒙 # , ℎ& 𝒙 & , ℎ& 𝒙 $

� = +1,+1,−1,−1
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Example: Labellings

ℋ = {ℎ", ℎ#, ℎ&}

ℋ 𝑆
= +1,+1,−1,−1 , −1,+1,−1,+1

ℋ 𝑆 = 2

15

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $
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Example: Labellings

ℋ = ℎ", ℎ#, ℎ&

ℋ 𝑆 =
+1,+1,−1,−1

ℋ 𝑆 = 1
�

16

ℎ!ℎ"

ℎ#

𝒙 "

𝒙 #

𝒙 !

𝒙 $
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�ℋ 𝑆 is the set of all labellings induced by ℋon 𝑆

� If 𝑆 = 𝑀, then ℋ 𝑆 ≤ 2!

�ℋ shatters 𝑆 if ℋ 𝑆 = 2!

� The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

� If ℋ can shatter arbitrarily large finite sets, then 
𝑑+, ℋ = ∞

� To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1. ∃ some set of 𝑑 data points that ℋ can shatter and

2. ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension

1710/26/22



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

18

𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

19

𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

20

𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
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𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

22

𝑆
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

23

𝑆

10/26/22



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

24

𝑆" 𝑆#
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 

25

ℋ 𝑆# = 8ℋ 𝑆" = 6
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

26

𝑆" 𝑆#
All points on the 

convex hull
At least one point 

inside the convex hull
10/26/22



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 
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𝑆" 𝑆#
All points on the 

convex hull
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

28

𝑆#
All points on the 

convex hull
At least one point 

inside the convex hull
10/26/22

𝑆"



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

29

𝑆#
All points on the 

convex hull

ℋ 𝑆" = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

30

𝑆#
All points on the 

convex hull

ℋ 𝑆" = 14
At least one point 

inside the convex hull
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

31

All points on the 
convex hull

ℋ 𝑆" = 14
At least one point 

inside the convex hull
10/26/22

𝑆#



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� What is 𝑉𝐶 ℋ ?
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

32

All points on the 
convex hull

ℋ 𝑆" = 14 ℋ 𝑆# = 14
At least one point 

inside the convex hull
10/26/22



VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 2-dimensional linear separators 

� 𝑉𝐶 ℋ = 3
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

33

All points on the 
convex hull

At least one point 
inside the convex hull

ℋ 𝑆" = 14 ℋ 𝑆# = 14
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VC-Dimension: 
Example

� 𝒙 ∈ ℝ# andℋ = all 𝑑-dimensional linear separators 

� 𝑉𝐶 ℋ = 𝑑 + 1
� Can ℋ shatter some set of 1 point?
� Can ℋ shatter some set of 2 points? 
� Can ℋ shatter some set of 3 points? 
� Can ℋ shatter some set of 4 points? 

34

All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆" = 14 ℋ 𝑆# = 14

10/26/22



VC-Dimension: 
Example

35

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

10/26/22



Poll Question 1: 

What is 𝑉𝐶 ℋ ?

A. -1 (TOXIC)
B. 0
C. 1
D. 2
E. 3

36

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., 

all hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

10/26/22



VC-Dimension: 
Example

37

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "

10/26/22



VC-Dimension: 
Example

38

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 "

10/26/22



VC-Dimension: 
Example

39

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑎

𝑥 " 𝑥 !

10/26/22



VC-Dimension: 
Example

40

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎

10/26/22



VC-Dimension: 
Example
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� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎

10/26/22



VC-Dimension: 
Example

42

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

𝑥 " 𝑥 !

𝑎

10/26/22



VC-Dimension: 
Example

43

� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive rays, i.e., all 

hypotheses of the form ℎ 𝑥; 𝑎 = sign 𝑥 − 𝑎

� 𝑉𝐶 ℋ = 1

𝑥 " 𝑥 !

𝑎

10/26/22



� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

44

𝑎 𝑏

10/26/22



� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 2: 

What is 𝑉𝐶 ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

45

𝑎 𝑏

10/26/22



� 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

� 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example

46

𝑎 𝑏

𝑥 " 𝑥 #𝑥 !

10/26/22



Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound

47

� Infinite, realizable case: for any hypothesis set ℋ and 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖
𝑉𝐶 ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
<𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

10/26/22



Statistical 
Learning 
Theory 
Corollary 3

48

� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with <𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1
𝑀

𝑉𝐶 ℋ log
𝑀

𝑉𝐶 ℋ
+ log

1
𝛿

with probability at least 1 − 𝛿.

10/26/22



Theorem 4: 
Vapnik-
Chervonenkis
(VC)-Bound

49

� Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖#

𝑉𝐶 ℋ + log
1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − <𝑅 ℎ ≤ 𝜖

10/26/22



Statistical 
Learning 
Theory 
Corollary 4

50

� Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ have 

𝑅 ℎ ≤ <𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/26/22



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ <𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

51

Approximation 
Generalization 
Tradeoff

How well does ℎ
approximate 𝑐∗?

How well does 
ℎ generalize?

10/26/22



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈
ℋ have 

𝑅 ℎ ≤ <𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ increases

Decreases as 
𝑉𝐶 ℋ increases

10/26/22



Can we use 
this corollary to 
guide model 
selection? 

53

� Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ have 

𝑅 ℎ ≤ <𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

with probability at least 1 − 𝛿.

10/26/22



Learning 
Theory and 
Model 
Selection

54

𝑉𝐶 ℋ
er

ro
r

� How can we find this “best tradeoff” for linear separators?

� Use a regularizer! By (effectively) reducing the number of 
features our model considers, we reduce its VC-dimension. 

10/26/22

<𝑅 ℎ (training error)

𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

<𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿



Learning 
Theory and 
Model 
Selection

55

𝑉𝐶 ℋ
er

ro
r

<𝑅 ℎ (training error)

𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

𝑅 ℎ (true error)

<𝑅 ℎ + 𝑂
1
𝑀

𝑉𝐶 ℋ + log
1
𝛿

Best tradeoff

� How can we find this “best tradeoff” for linear separators?

� Use a regularizer! By (effectively) reducing the number of 
features our model considers, we reduce its VC-dimension. 

10/26/22



Learning 
Theory 
Learning 
Objectives

You should be able to…
� Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
� Distinguish true error, train error, test error
� Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

� Apply sample complexity bounds to real-world machine 
learning examples

� Theoretically motivate regularization

5610/26/22



Poll Question 3:

What questions 
do you have?

You should be able to…
� Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
� Distinguish true error, train error, test error
� Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

� Apply sample complexity bounds to real-world machine 
learning examples

� Theoretically motivate regularization
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Recall: 
Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Recall: 
Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 
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Bernoulli 
Distribution
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙0 1 − 𝜙 "10

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 2 , the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
<𝜙
−

𝑁%
1 − <𝜙

= 0 →
𝑁"
<𝜙
=

𝑁%
1 − <𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − <𝜙 = 𝑁% <𝜙 → 𝑁" = <𝜙 𝑁% +𝑁"

𝜕ℓ
𝜕𝜙

→ <𝜙 =
𝑁"

𝑁% +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 2 and 𝑁% is 

the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙0 1 − 𝜙 "10

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 2 , the log-likelihood is

ℓ 𝜙 =a
34"

2

log 𝑝 𝑥 3 |𝜙 =a
34"

2

log𝜙0 ! 1 − 𝜙 "10 !

ℓ 𝜙 =a
34"

2

𝑥 3 log𝜙 + 1 − 𝑥 3 log 1 − 𝜙

ℓ 𝜙 = 𝑁" log𝜙 + 𝑁% log 1 − 𝜙

� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 2 and 𝑁% is 
the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙0 1 − 𝜙 "10

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
𝜙
−

𝑁%
1 − 𝜙

= 0 →
𝑁"
<𝜙
=

𝑁%
1 − <𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − <𝜙 = 𝑁% <𝜙 → 𝑁" = <𝜙 𝑁% +𝑁"

𝜕ℓ
𝜕𝜙

→ <𝜙 =
𝑁"

𝑁% +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 2 and 𝑁% is 

the number of 0’s



Coin 
Flipping
MLE
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� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙0 1 − 𝜙 "10

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
<𝜙
−

𝑁%
1 − <𝜙

= 0 →
𝑁"
<𝜙
=

𝑁%
1 − <𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − <𝜙 = 𝑁% <𝜙 → 𝑁" = <𝜙 𝑁% +𝑁"

𝜕ℓ
𝜕𝜙

→ <𝜙 =
𝑁"

𝑁% +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 2 and 𝑁% is 

the number of 0’s


