10-301/601: Introduction to Machine Learning Lecture 16 - Learning Theory (Infinite Case)

Henry Chai

10/26/22

- Let \mathcal{H} be the set of all conjunctions over M Boolean variables, $\boldsymbol{x} \in\{0,1\}^{M}$; examples of conjunctions are

Q \& A:
Why is the answer C?

$$
\begin{aligned}
\cdot h(\boldsymbol{x})=x_{1}\left(1-x_{2}\right) x_{4} x_{10} & |H| \\
\cdot h(\boldsymbol{x})=\left(1-x_{3}\right)\left(1-x_{4}\right) x_{8} & \neq 10^{3}
\end{aligned}
$$

- Assuming $c^{*} \in \mathcal{H}$, if $M=10, \epsilon=0.1$, and $\delta=0.01$, at least how many labelled examples do we need to satisfy the PAC criterion using Theorem 1?

A. 1 (TOXIC)

B. $10(2 \ln 10+\ln 100) \approx 92$ F. $100(2 \ln 10+\ln 10) \approx 691$
C. $10(3 \ln 10+\ln 100) \approx 116$ G. $100(3 \ln 10+\ln 10) \approx 922$
D. $10(10 \ln 2+\ln 100) \approx 116$ H. $100(10 \ln 2+\ln 10) \approx 924$
(E.) $10(\underbrace{10 \ln 3}+\ln 100) \approx 156$ ।. $100(10 \ln 3+\ln 10) \approx 1329$

Q \& A:

How does the statistical learning theory corollary follow from this theorem?

- For a finite hypothesis set \mathcal{H} s.t. $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M \geq \underbrace{\frac{1}{\epsilon}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)}
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

Q \& A:
How does the statistical learning theory corollary follow from this theorem?

- For a finite hypothesis set \mathcal{H} s.t. $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M \underset{\rightleftarrows}{\underset{\epsilon}{\epsilon}} \underset{(\ln }{ }\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

- Solving for ϵ gives...

Q \& A:

How does the statistical learning theory corollary follow from this theorem?

- For a finite hypothesis set \mathcal{H} s.t. $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, given a training data set S s.t. $|S|=M$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have

$$
R(h) \leq \frac{1}{M}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

with probability at least $1-\delta$.

- Announcements
- HW5 released 10/13, due 10/27 (tomorrow) at 11:59 PM
- HW6 released 10/27 (tomorrow), due 11/4 at 11:59 PM
- Only two late days allowed on HW6
\neq Exam 2 on 11/10, two weeks from tomorrow (more details to follow)

Front Matter

- All topics between Lecture 8 and Lecture 17 (next Monday's lecture) are in-scope
- Exam 1 content may be referenced but will not be the primary focus of any question
- Exam 3 scheduled
- Thursday, December 15th from 9:30 AM to 11:30 AM
- Sign up for peer tutoring! See Piazza for more details

Recall Theorem 1:
Finite,
Realizable Case

- For a finite hypothesis set \mathcal{H} s.t. $c^{*} \in \mathcal{H}$ and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M \geq \frac{1}{\epsilon}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{1}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

Recall -
Theorem 2:
Finite,
Agnostic Case

- For a finite hypothesis set \mathcal{H} and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M \geq \frac{1}{2 \epsilon^{\prime}}\left(\underline{\ln (|\mathcal{H}|)}+\ln \left(\frac{2}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ satisfy $|R(h)-\hat{R}(h)| \leq \epsilon$

- Bound is inversely quadratic in ϵ, e.g., halving ϵ means we need four times as many labelled training data points
- For a finite hypothesis set \mathcal{H} and arbitrary distribution p^{*}, if the number of labelled training data points satisfies

$$
M \geq \frac{1}{2 \epsilon^{2}}\left(\ln (|\mathcal{H}|)+\ln \left(\frac{2}{\delta}\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ satisfy $|R(h)-\hat{R}(h)| \leq \epsilon$

- Insight: $|\mathcal{H}|$ measures how complex our hypothesis set is
- Idea: define a different measure of hypothesis set complexity
- Given some finite set of data points $S=\left(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right)$ and some hypothesis $h \in \mathcal{H}$, applying h to each point in S results in a labelling
- $\left(h\left(\boldsymbol{x}^{(1)}\right), \ldots, h\left(\boldsymbol{x}^{(M)}\right)\right)$ is a vector of $M+1$'s and -1 's

Labellings

- Important note: our discussion of PAC learning assumes binary classification
- Given $S=\left(\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(M)}\right)$, each hypothesis in \mathcal{H} induces a labelling but not necessarily a unique labelling
- The set of labellings induced by \mathcal{H} on S is

$$
\mathcal{H}(S)=\left\{\left(h\left(\boldsymbol{x}^{(1)}\right), \ldots, h\left(\boldsymbol{x}^{(M)}\right)\right) \mid h \in \mathcal{H}\right\}
$$

Example: Labellings

$$
\mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \left(h_{1}\left(x^{(1)}\right), h_{1}\left(x^{(2)}\right), h_{1}\left(x^{(3)}\right), h_{1}\left(x^{(4)}\right)\right) \\
& =\underbrace{(-1,+1,-1,+1)}
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \left(h_{2}\left(x^{(1)}\right), h_{2}\left(x^{(2)}\right), h_{2}\left(x^{(3)}\right), h_{2}\left(x^{(4)}\right)\right) \\
& =(-1,+1,-1,+1)
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \left(h_{3}\left(x^{(1)}\right), h_{3}\left(x^{(2)}\right), h_{3}\left(x^{(3)}\right), h_{3}\left(x^{(4)}\right)\right) \\
& \quad=(+1,+1,-1,-1)
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \mathcal{H}(S) \\
& =\{(+1,+1,-1,-1),(-1,+1,-1,+1)\} \\
& |\mathcal{H}(S)|=2
\end{aligned}
$$

Example: Labellings

$$
\begin{aligned}
& \mathcal{H}=\left\{h_{1}, h_{2}, h_{3}\right\} \\
& \mathcal{H}(S)= \\
& \{(+1,+1,-1,-1)\} \\
& |\mathcal{H}(S)|=1
\end{aligned}
$$

- $\mathcal{H}(S)$ is the set of all labellings induced by \mathcal{H} on S
- If $|S|=M$, then $|\mathcal{H}(S)| \leq 2^{M}$
- \mathcal{H} shatters S if $|\mathcal{H}(S)|=2^{M}$
- The VC-dimension of $\mathcal{H}, V C(\mathcal{H})$, is the size of the largest

VC-Dimension

 set S that can be shattered by \mathcal{H}.- If \mathcal{H} can shatter arbitrarily large finite sets, then

$$
V C(\mathcal{H})=\infty
$$

- To prove that $V C(\mathcal{H})=d$, you need to show
$\longrightarrow 1$. \exists some set of d data points that \mathcal{H} can shatter and
you doit
get

2. \nexists a set of $d+1$ data points that \mathcal{H} can shatter pick $\xrightarrow{\prime \prime}$

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators

- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?

VC-Dimension:

 Example

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example
S

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

Example

S_{1}

S_{2}

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example

$$
\left|\mathcal{H}\left(S_{1}\right)\right|=6 \quad\left|\mathcal{H}\left(S_{2}\right)\right|=8
$$

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

Example

- Can \mathcal{H} shatter some set of 4 points?

S_{1}
All points on the convex hull

S_{2}
At least one point inside the convex hull
- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension: Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

S_{2}
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- What is $V C(\mathcal{H})$?
- Can \mathcal{H} shatter some set of 1 point?
- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?
- Can \mathcal{H} shatter some set of 4 points?

VC-Dimension:

Example

$\left|\mathcal{H}\left(S_{1}\right)\right|=14<2^{4}$
All points on the convex hull

$\left|\mathcal{H}\left(S_{2}\right)\right|=14$
At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all 2-dimensional linear separators
- $V C(\mathcal{H})=3$

Can \mathcal{H} shatter some set of 1 point?

- Can \mathcal{H} shatter some set of 2 points?
- Can \mathcal{H} shatter some set of 3 points?

VC-Dimension:

 Example- Can \mathcal{H} shatter some set of 4 points?

$\left|\mathcal{H}\left(S_{1}\right)\right|=14$
All points on the convex hull

$$
\left|\mathcal{H}\left(S_{2}\right)\right|=14
$$

At least one point inside the convex hull

- $\boldsymbol{x} \in \mathbb{R}^{2}$ and $\mathcal{H}=$ all d-dimensional linear separators
- $V C(\mathcal{H})=d+1$

VC-Dimension:

 Example- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

 Example

Poll Question 1:

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e.,

What is $V C(\mathcal{H})$?
A. -1 (TOXIC)
B. 0
C. 1
D. 2
E. 3 all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

 Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

 Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

 Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive rays, i.e., all hypotheses of the form $h(x ; a)=\operatorname{sign}(x-a)$

VC-Dimension:

Example

- $V C(\mathcal{H})=1$
- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

VC-Dimension: Example

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

Poll Question 2:

What is VC(J્) ?
A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

- $x \in \mathbb{R}$ and $\mathcal{H}=$ all 1-dimensional positive intervals

VC-Dimension:

 Example

- $V C(\mathcal{H})=2$

where $C^{\star} \in$ 位

Theorem 3:
 Vapnik-
 Chervonenkis (VC)-Bound

- Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^{*}, if the number of labelled training data points satisfies
instead of $|H|$

$$
M=\underset{\sim}{O}(\underbrace{\frac{1}{\epsilon}\left(V C(\mathcal{H}) \log \left(\frac{1}{\epsilon}\right)+\log \left(\frac{1}{\delta}\right)\right.}))
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$

Statistical
 Learning Theory Corollary 3

- Infinite, realizable case: for any hypothesis set \mathcal{H} and distribution p^{*}, given a training data set S s.t. $|S|=M$, all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have

$$
R(h) \leq O\left(\frac{1}{M}\left(V C(\mathcal{H}) \log \left(\frac{M}{V C(\mathcal{H})}\right)+\log \left(\frac{1}{\delta}\right)\right)\right)
$$

with probability at least $1-\delta$.

Theorem 4: VapnikChervonenkis (VC)-Bound

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and distribution p^{*}, if the number of labelled training data points satisfies

$$
M=O\left(\frac{1}{\epsilon^{2}}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)\right)
$$

then with probability at least $1-\delta$, all $h \in \mathcal{H}$ have $|R(h)-\hat{R}(h)| \leq \epsilon$

Statistical Learning Theory Corollary 4

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and distribution p^{*}, given a training data set S s.t. $|S|=M$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+O\left(\sqrt{\frac{1}{M}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1-\delta$.

How well does h generalize?

Approximation Generalization Tradeoff

$$
R(h) \leq \underbrace{\hat{R}}(h)+O\left(\sqrt{\frac{1}{M}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)
$$

How well does h approximate c^{*} ?

Increases as
$V C(\mathcal{H})$ increases
Approximation Generalization Tradeoff

$$
\begin{aligned}
& R(h) \leq \hat{R}(h)+O\left(\sqrt{\frac{1}{M}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right) \\
& \begin{array}{l}
\text { Decreases as } \\
V C(\mathcal{H}) \text { increases }
\end{array}
\end{aligned}
$$

Can we use this corollary to guide model selection?

- Infinite, agnostic case: for any hypothesis set \mathcal{H} and distribution p^{*}, given a training data set S s.t. $|S|=M$, all $h \in \mathcal{H}$ have

$$
R(h) \leq \hat{R}(h)+O\left(\sqrt{\frac{1}{M}\left(V C(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right)}\right)
$$

with probability at least $1-\delta$.

Learning Theory and Model Selection

- How can we find this "best tradeoff" for linear separators?
- Use a regularizer! By (effectively) reducing the number of features our model considers, we reduce its VC-dimension.

Learning Theory and Model

Selection

Learning Theory and Model Selection

- How can we find this "best tradeoff" for linear separators?
- Use a regularizer! By (effectively) reducing the number of features our model considers, we reduce its VC-dimension.

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

Poll Question 3:

What questions do you have?

You should be able to...

- Identify the properties of a learning setting and assumptions required to ensure low generalization error
- Distinguish true error, train error, test error
- Define PAC and explain what it means to be approximately correct and what occurs with high probability
- Apply sample complexity bounds to real-world machine learning examples
- Theoretically motivate regularization

Recall:

Probabilistic Learning

- Previously:
- (Unknown) Target function, $c^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Classifier, $h: \mathcal{X} \rightarrow \mathcal{Y}$
- Goal: find a classifier, h, that best approximates c^{*}
- Now:
- (Unknown) Target distribution, $y \sim p^{*}(Y \mid x)$
- Distribution, $p(Y \mid \boldsymbol{x})$
- Goal: find a distribution, p, that best approximates p^{*}
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the

Recall:

Maximum Likelihood Estimation (MLE)
samples is maximized

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- A Bernoulli random variable takes value 1 probability ϕ and value $0 \quad$ with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- Given N id samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-likelihood is

$$
{ }_{10126 / 22} \text { where } N_{i}=\# \text { of irs }=N_{1} \log (\phi)+N_{0} \log (1-\phi)
$$

$$
\begin{aligned}
l(\phi) & =\log \left(\prod_{i=1}^{N} p\left(x^{(i)} ; \phi\right)\right) \\
& =\sum_{i=1}^{N} \log \left(p\left(x^{(i)} ; \phi\right)\right) \\
& =\sum_{i=1}^{N} \log \left(\phi^{x^{(i)}}(1-\phi)^{1-x^{(i)}}\right) \\
& =\sum_{i=1}^{N} x^{(i)} \log (\phi)+\left(1-x^{(i)}\right) \log (1-\phi)
\end{aligned}
$$

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

$$
\begin{aligned}
& \text { e partial derivative of the log-likelihood is } \\
& l(\phi)=N_{1} \log (\phi)+N_{0} \log (1-\phi) \\
& \frac{\partial l}{\partial \phi}=\frac{N_{1}}{\phi}+\frac{N_{0}}{1-\phi}(-1) \\
& \Rightarrow \frac{N_{1}}{\hat{\phi}}-\frac{N_{0}}{1-\hat{\phi}}=0 \Rightarrow \frac{N_{1}}{\hat{\phi}}=\frac{N_{0}}{1-\hat{\phi}} \\
& \Rightarrow N_{1}(1-\hat{\phi})=N_{0} \hat{\phi} \Rightarrow N_{1}=\left(N_{1}+N_{0}\right) \hat{\phi} \\
& \Rightarrow \hat{\phi}=N_{1} / N_{1}+N_{0}
\end{aligned}
$$

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

Coin

Flipping
MLE

$$
\begin{aligned}
& \frac{N_{1}}{\hat{\phi}}-\frac{N_{0}}{1-\hat{\phi}}=0 \rightarrow \frac{N_{1}}{\hat{\phi}}=\frac{N_{0}}{1-\hat{\phi}} \\
\rightarrow & N_{1}(1-\hat{\phi})=N_{0} \hat{\phi} \rightarrow N_{1}=\hat{\phi}\left(N_{0}+N_{1}\right) \\
\rightarrow & \hat{\phi}=\frac{N_{1}}{N_{0}+N_{1}}
\end{aligned}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's

