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* Announcements

* HW5 released 10/13, due 10/27 at 11:59 PM
Front Matter » Exam 3 scheduled
* Thursday, December 15% from 9:30 AM to 11:30 AM

* Sign up for peer tutoring! See Piazza for more details
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Q&A:

* Sorry, I've been

training a fresh

Where have
you been???

neural network...
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Q&A:

My HWS5 code

isn’t working,

what should |
do???

10/24/22

* Review the recitation material!

* Specifically, test your implementation against the
numerical examples our TAs worked through and

make sure you're getting the same values



Learning Paradigms:

What data is available and
When ? What form of prediction?

supervised learning

. unsupervised learning

. semi-supervised learning
. reinforcement learning

. active learning

O imitation learning

0 domain adaptation
O online learning
0 density estimation

- recommender systems
»  featurelearning
- manifold learning

. dimensionality reduction

O ensemble learning

0 distant supervision

. hyperparameter optimization

Theoretical Foundations:
What principles guide learning?
probabilistic

information theoretic
evolutionary search

ML as optimization

OO0

Problem Formulation:

What is the structure of our output prediction? o
c
boolean Binary Classification 50
categorical Multiclass Classification Bk
Q
ordinal Ordinal Classification i c =
real Regression 2 S
ordering Ranking g oS0
. . o o & o)
multiple discrete  Structured Prediction s Y 06.2
multiple continuous  (e.g. dynamical systems) o S L%c‘ﬁ
both discrete & (e.g. mixed graphical models) = & ; ol 5
Q 4L o
SOl <X Z>50n

Facets of Building ML
Systems:

How to build systems that are
robust, efficient, adaptive,
effect/ve7

1. Data prep
2. Model selection

3. Training (optimization /
search)

4. Hyperparameter tuning on
validation data

5. (Blind) Assessment on test
data

Big Ideas in ML:

Which are the ideas driving
development of the field?

* inductive bias

*  generalization / overfitting

*  bias-variance decomposition
* generative vs. discriminative
* deep nets, graphical models
*  PAClearning

* distant rewards
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Statistical

Learning
Theory Model

10/24/22

Data points are generated iid from some unknown
distribution

x® ~ p*(x)

Labels are generated from some unknown function
y(i) — c*(x(i))

. The learning algorithm chooses the hypothesis (or

classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



* True error rate
* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average across all
possible data points

* Test error rate
* Used to evaluate hypothesis performance

Types of Error

* Good estimate of your hypothesis’s true error

- Validation error rate
- Used to set hypothesis hyperparameters

* Slightly “optimistic” estimate of your hypothesis’s true error

* Training error rate
* Used to set model parameters

* Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk

(a.k.a. Error)

10/24/22

* Expected risk of a hypothesis h (a.k.a. true error)
R(h) = Py p(c*(x) # h(x))

* Empirical risk of a hypothesis h (a.k.a. training error)
R(h) = Py .p(c*(x) # h(x))

. %z 1(c*(x®) % h(x®))
= %ZN: 1 (y(i) + h(x(i)))

where D = {(x(i), y(i))}liv=1 is the training data set and
x ~ D denotes a point sampled uniformly at random from D



Three

Functions of
Interest

10/24/22

* The true function, c*

* The expected risk minimizer,

h* = argmin R(h)
heXH

- The empirical risk minimizer,

h = argmin R(h)
heXH

10



Poll Question 1:

Which of the o
following are always  The true function, ¢
true?
. * The expected risk minimizer,
25 6 h* = argmin R(h)
B.c" heH
C.h* * The empirical risk minimizer,
D.c” h = argmin R(h)
heH

E. None of the above
F. TOXIC
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Key Question

10/24/22

* Given a hypothesis with zero/low training error, what

can we say about its true error?

12



* The sample complexity of an algorithm/hypothesis set
is the number of labelled training data points needed to

satisfy the PAC criterion for some § and €
* PAC = Probably Approximately Correct

* PAC Criterion:
P(|R(h) —R(h)| <e)=1-6VheH

PAC Learning

for some € (difference between expected and empirical

risk) and & (probability of “failure”)

* We want the PAC criterion to be satisfied for

H with small values of € and 6

10/24/22 13



Sample

Complexity

10/24/22

* The sample complexity of an algorithm/hypothesis set

is the number of labelled training data points needed to

satisfy the PAC criterion for some § and €

* Four cases

* Realizable vs. Agnostic

* Realizable » c* € H

* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite

* Finite » |H| < o

* Infinite = |H| = oo

14



Theorem 1:

Finite,
Realizable Case

10/24/22

* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data
points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

15



1. Assume there are K “bad” hypotheses in H, i.e.,
hy, hy, ..., hg that all have R(hy) > €

2. Pick one bad hypothesis, hy,

A. Probability that hy is consistent with (correctly
Proof of classifies) the first training data point< 1 — €

Theorem 1: B. Plrobafblllty ;clhl\e/nlt hy is cor;5|stent with (c(olrrectgd
.- classifies) a training data points < (1 — €
Finite, ) g data p

Realizable Case 3. Probability that at least one bad hypothesis is
consistent with all M training data points =
P(hq is consistent with all M training data points U
h, is consistent with all M training data points U

U hg is consistent with all M training data points)
10/24/22
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Proof of
Theorem 1:

Finite,
Realizable Case

10/24/22

P(h, is consistent with all M training data points U
h, is consistent with all M training data points U

U hg is consistent with all M training data points)

K

< P(hy is consistent with all M training data points)
k=1
by the union bound: P(AU B) = P(A) + P(B) — P(A N B)
< P(A) + P(B)

17



Proof of
Theorem 1:

Finite,
Realizable Case

10/24/22

K

Z P(hy is consistent with all M training data points)

k=1
<k(l-eM < |H|(1-e)M

because k < |H|

3.

Probability that at least one bad hypothesis is consistent
with all M training data points < |H|(1 — )M

Using the fact that 1 — x < exp(—x) V x,
|H|(1 - e < |H]|exp(—e)™ = |H| exp(—Me)

Probability that at least one bad hypothesis is consistent
with all M training data points < |H| exp(—Me), which
we want to be low, i.e., || exp(—Me) < 6

18



|| exp(—Me) < § - exp(—Me) <

||

5
Proof of - Mes 10g(|}[|)
Theorem 1: 1 )
Finite, M= E( log(m))
Realizable Case e l<log (@))

€ o)
1 1
- M > - (log(lﬂ-[l) + log (E))

10/24/22
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Proof of
Theorem 1:

Finite,
Realizable Case

10/24/22

6. GivenM > é(log(I}[I) + log (%)) labelled training

data points, the probability that 3 a bad hypothesis
hy € I with R(hy) > eand R(h,) =0is< §
)

Given M > é(log(I}[I) + log (%)) labelled training data

points, the probability that all hypotheses h;, € H with
R(hy) > ehave R(hy) >0is>1—6

20



Proof of
Theorem 1:

Finite,
Realizable Case

10/24/22

6. GivenM > é(log(I}[I) + log (%)) labelled training

data points, the probability that all hypotheses hj, €
H with R(hg) > e have R(hy) > 0is>1—6
)

Given M > é(log(I}[I) + log (%)) labelled training data

points, the probability that all hypotheses h;, € H with
R(hy) =0haveR(hy) <€is=>1—16

(proof by contrapositive)

21



Aside: Proof by

Contrapositive

10/24/22

* The contrapositive of a statement A = B is =B = —A

* A statement and its contrapositive are logically equivalent,

i.e., A = B means that =B = -4

- Example: “it’s raining = Henry brings an umbrella”

is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”

22



Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data
points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Poll Question 2:

Hint - Recall

M > %(mqm) I (%))

10/24/22

moNw >

* Let H be the set of all conjunctions over M Boolean

variables, x € {0,1}™; examples of conjunctions are

*h(x) = x1(1 — x3)x4%19

“h(x) = (1 —x3)(1 — x4)xg

* Assumingc®* € H,if M = 10,e = 0.1, and 6 = 0.01, at

least how many labelled examples do we need to satisfy

the PAC criterion using Theorem 17

1 (TOXIC)
10(2In10 + 100) ~ 92  F. 100(21n10 + 10) ~ 691
10(3In10 + 100) ~ 116 G. 100(31n10 + 10) ~ 922

.10(10In2 + 100) ~ 116 H. 100(101n2 + 10) ~ 924
10(10In3 + 100) ~ 156 . 100(101n3 + 10) ~ 1329
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

* Solving for € gives...

25



* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |[S| = M,

Statistical all h € 7 with R(h) = 0 have
Learning 1 1
R(h) < M(ln(l?—[l) +1n (E))

Theory
Corollary 1 with probability at least 1 — 6.

10/24/22



Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > 2—12(1n(|}[|) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

* Solving for € gives...

27



Statistical
Learning

Theory
Corollary 2
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}fl) +1In (%))

with probability at least 1 — 6.

28



What happens

when |H| = oo?

10/24/22

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}fl) +1In (%))

with probability at least 1 — 6.

29



What happens

when |H| = oo?

10/24/22

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(h) < R(h) + V % (ln(OO) +1n (g))

with probability at least 1 — 6.

30



What happens

when |H| = co?

10/24/22

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have
R(h) < R(h) + o (not a very meaningful result...)

with probability at least 1 — 6.

* Insight: |H'| measures how complex our hypothesis set is

* ldea: define a different measure of hypothesis set complexity

31



The Union

Bound...

10/24/22

P{A U B} < P{4} + P{B)

32



The Union

Bound is Bad!
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P{A U B} < P{4} + P{B)

P{AU B} = P{A} + P{B} — P{A N B}

33



Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “hq is consistent with all M
training data points”

* “h, is consistent with all M
training data points”

will overlap a lot!

10/24/22
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

o faroom)em)

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

* dyc(H) is the VC-dimension of H, a measure of how

complex our hypothesis set is, suitable when |H| =



