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10-301/601: Introduction 
to Machine Learning
Lecture 15 – Learning 
Theory (Finite Case)



Front Matter

� Announcements

� HW5 released 10/13, due 10/27 at 11:59 PM

� Exam 3 scheduled

� Thursday, December 15th from 9:30 AM to 11:30 AM

� Sign up for peer tutoring! See Piazza for more details. 
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https://piazza.com/class/l6xoswmdxo10m/post/985


Q & A: 

Where have 
you been???

� Sorry, I’ve been 

training a fresh 
neural network…
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Q & A: 

My HW5 code 
isn’t working, 
what should I 
do???

� Review the recitation material!

� Specifically, test your implementation against the 
numerical examples our TAs worked through and 
make sure you’re getting the same values
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ML Big 
Picture

5

Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Statistical 
Learning 
Theory Model

1. Data points are generated iid from some unknown
distribution

𝒙 ! ∼ 𝑝∗ 𝒙

2. Labels are generated from some unknown function

𝑦 ! = 𝑐∗ 𝒙 !

3. The learning algorithm chooses the hypothesis (or 
classifier) with lowest training error rate from a 
specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true
error rate
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Types of Error

� True error rate
� Actual quantity of interest in machine learning
� How well your hypothesis will perform on average across all 

possible data points

� Test error rate
� Used to estimate hypothesis performance
� Good estimate of your hypothesis’s true error

� Validation error rate
� Used to set hypothesis hyperparameters
� Slightly “optimistic” estimate of your hypothesis’s true error

� Training error rate
� Used to set model parameters
� Very “optimistic” estimate of your hypothesis’s true error
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Types of Risk

� Expected risk of a hypothesis ℎ (a.k.a. true error)

𝑅 ℎ = 𝑃𝒙 ∼ %∗ 𝑐∗ 𝒙 ≠ ℎ 𝒙

� Empirical risk of a hypothesis ℎ (a.k.a. training error) 
,𝑅 ℎ = 𝑃𝒙 ∼𝒟 𝑐∗ 𝒙 ≠ ℎ 𝒙

,𝑅 ℎ =
1
𝑁/
!'(

)

𝟙 𝑐∗ 𝒙 ! ≠ ℎ 𝒙 !

,𝑅 ℎ =
1
𝑁
/
!'(

)

𝟙 𝑦 ! ≠ ℎ 𝒙 !

where 𝒟 = 𝒙 ! , 𝑦 !
!'(
)

is the training data set and 
𝒙 ∼ 𝒟 denotes a point sampled uniformly at random from 𝒟
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Three 
Functions of 
Interest

� The true function, 𝑐∗

� The expected risk minimizer, 
ℎ∗ = argmin

* ∈ℋ
𝑅 ℎ

� The empirical risk minimizer, 

,ℎ = argmin
* ∈ℋ

,𝑅 ℎ
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Poll Question 1:
Which of the 
following are always
true?

A. 𝑐∗ = ℎ∗
B. 𝑐∗ = $ℎ
C. ℎ∗ = $ℎ
D. 𝑐∗ = ℎ∗ = $ℎ
E. None of the above
F. TOXIC

� The true function, 𝑐∗

� The expected risk minimizer, 
ℎ∗ = argmin

* ∈ℋ
𝑅 ℎ

� The empirical risk minimizer, 

,ℎ = argmin
* ∈ℋ

,𝑅 ℎ
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If H is all linear separators,
Then…



Key Question � Given a hypothesis with zero/low training error, what 

can we say about its true error? 
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PAC Learning
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� The sample complexity of an algorithm/hypothesis set 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

� PAC = Probably Approximately Correct

� PAC Criterion:

𝑃 𝑅 ℎ − ,𝑅 ℎ ≤ 𝜖 ≥ 1 − 𝛿 ∀ ℎ ∈ ℋ

for some 𝜖 (difference between expected and empirical 

risk) and 𝛿 (probability of “failure”) 

� We want the PAC criterion to be satisfied for 

ℋ with small values of ϵ and δ



Sample 
Complexity

� The sample complexity of an algorithm/hypothesis set 

is the number of labelled training data points needed to 

satisfy the PAC criterion for some 𝛿 and 𝜖

� Four cases

� Realizable vs. Agnostic

� Realizable → 𝑐∗ ∈ ℋ

� Agnostic → 𝑐∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞

� Infinite → ℋ = ∞
10/24/22 14



Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are 𝐾 “bad” hypotheses in ℋ, i.e., 
ℎ(, ℎ-, … , ℎ. that all have 𝑅 ℎ/ > 𝜖

2. Pick one bad hypothesis, ℎ/
A. Probability that ℎ/ correctly classifies the first 

training data point ≤ 1 − 𝜖

B. Probability that ℎ/ correctly classifies all 𝑀
training data points ≤ 1 − 𝜖 0

3. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points =

𝑃(ℎ( correctly classiSies all 𝑀 training data points ∪
ℎ- correctly classiSies all 𝑀 training data points ∪

⋮
∪ ℎ. correctly classiSies all 𝑀 training data points)
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Proof of
Theorem 1: 
Finite, 
Realizable Case

𝑃(ℎ( correctly classiSies all 𝑀 training data points ∪
ℎ- correctly classiSies all 𝑀 training data points ∪

⋮
∪ ℎ. correctly classiSies all 𝑀 training data points)

≤ /
/'(

.

𝑃 ℎ/ correctly classiSies all 𝑀 training data points

by the union bound: 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
by the union bound: 𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
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Proof of
Theorem 1: 
Finite, 
Realizable Case

/
/'(

.

𝑃 ℎ/ correctly classiSies all 𝑀 training data points

≤ 𝑘 1 − 𝜖 0 ≤ ℋ 1 − 𝜖 0

because 𝑘 ≤ ℋ

3. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points ≤ ℋ 1 − 𝜖 0

4. Using the fact that 1 − 𝑥 ≤ exp −𝑥 ∀ 𝑥, 
ℋ 1− 𝜖 0 ≤ ℋ exp −𝜖 0 = ℋ exp −𝑀𝜖

5. Probability that at least one bad hypothesis correctly 
classifies all 𝑀 training data points ≤ ℋ exp −𝑀𝜖 , 
which we want to be low, i.e., ℋ exp −𝑀𝜖 ≤ 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −𝑀𝜖 ≤ 𝛿 → exp −𝑀𝜖 ≤
𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → −𝑀𝜖 ≤ log
𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
− log

𝛿
ℋ

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
log

ℋ
𝛿

ℋ exp −𝑁𝜖 ≤ 𝛿 → 𝑀 ≥
1
𝜖
log ℋ + log

1
𝛿

10/24/22 19



Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training 

data points, the probability that ∃ a bad hypothesis 
ℎ/ ∈ ℋ with 𝑅 ℎ/ > 𝜖 and ,𝑅 ℎ/ = 0 is ≤ 𝛿

⇕

Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training data 

points, the probability that all hypotheses ℎ/ ∈ ℋ with 
𝑅 ℎ/ > 𝜖 have ,𝑅 ℎ/ > 0 is ≥ 1 − 𝛿
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training 

data points, the probability that all hypotheses ℎ/ ∈
ℋ with 𝑅 ℎ/ > 𝜖 have ,𝑅 ℎ/ > 0 is ≥ 1 − 𝛿

⇕

Given 𝑀 ≥ (
1
log ℋ + log (

2
labelled training data 

points, the probability that all hypotheses ℎ/ ∈ ℋ with 
,𝑅 ℎ/ = 0 have 𝑅 ℎ/ ≤ 𝜖 is ≥ 1 − 𝛿

(proof by contrapositive) 
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Aside: Proof by 
Contrapositive

� The contrapositive of a statement 𝐴 ⇒ 𝐵 is ¬𝐵 ⇒ ¬𝐴

� A statement and its contrapositive are logically equivalent, 
i.e., 𝐴 ⇒ 𝐵 means that ¬𝐵 ⇒ ¬𝐴

� Example: “it’s raining ⇒ Henry brings an umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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� Let ℋ be the set of all conjunctions over 𝑀 Boolean 

variables, 𝒙 ∈ 0,1 0; examples of conjunctions are

� ℎ 𝒙 = 𝑥( 1 − 𝑥- 𝑥3𝑥(4
� ℎ 𝒙 = 1 − 𝑥5 1 − 𝑥3 𝑥6

� Assuming 𝑐∗ ∈ ℋ, if 𝑀 = 10, 𝜖 = 0.1, and 𝛿 = 0.01, at 
least how many labelled examples do we need to satisfy 

the PAC criterion using Theorem 1?

Poll Question 2:

Hint - Recall
𝑀 ≥

1
𝜖
ln ℋ + ln

1
𝛿 A. 1 (TOXIC)

B. 10 2 ln 10 + ln 100 ≈ 92
C. 10 3 ln 10 + ln 100 ≈ 116
D. 10 10 ln 2 + ln 100 ≈ 116
E. 10 10 ln 3 + ln 100 ≈ 156

F. 100 2 ln 10 + ln 10 ≈ 691
G. 100 3 ln 10 + ln 10 ≈ 922
H. 100 10 ln 2 + ln 10 ≈ 924
I. 100 10 ln 3 + ln 10 ≈ 1329



Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 
distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 ≥
1
𝜖
ln ℋ + ln

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� Solving for 𝜖 gives... 



Statistical 
Learning 
Theory 
Corollary 1
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� For a finite hypothesis set ℋ s.t. 𝑐∗ ∈ ℋ and arbitrary 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 
all ℎ ∈ ℋ with ,𝑅 ℎ = 0 have

𝑅 ℎ ≤
1
𝑀

ln ℋ + ln
1
𝛿

with probability at least 1 − 𝛿.



Theorem 2: 
Finite,  
Agnostic Case
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� For a finite hypothesis set ℋ and arbitrary distribution 
𝑝∗, if the number of labelled training data points satisfies 

𝑀 ≥
1
2𝜖- ln ℋ + ln

2
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ satisfy  

𝑅 ℎ − ,𝑅 ℎ ≤ 𝜖

� Bound is inversely quadratic in 𝜖, e.g., halving 𝜖 means 

we need four times as many labelled training data points

� Solving for 𝜖 gives…



Statistical 
Learning 
Theory 
Corollary 2
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +
1
2𝑀

ln ℋ + ln
2
𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?
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� For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +
1
2𝑀

ln ∞ + ln
2
𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



� For a finite hypothesis set ℋ and arbitrary distribution

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ
have

𝑅 ℎ ≤ ,𝑅 ℎ +∞ =

with probability at least 1 − 𝛿.

� Insight: ℋ measures how complex our hypothesis set is

� Idea: define a different measure of hypothesis set complexity
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What happens 
when ℋ = ∞? (not a very meaningful result…)



The Union 
Bound…

32

A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The Union 
Bound is Bad!

33

A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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Intuition

� If two hypotheses ℎ(, ℎ- ∈ ℋ are 
very similar, then the events 

� “ℎ( is consistent with all 𝑀
training data points” 

� “ℎ- is consistent with all 𝑀
training data points” 

� will overlap a lot! 

3410/24/22



Intuition

35

� If two hypotheses ℎ(, ℎ- ∈ ℋ are 
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Theorem 3: 
Vapnik-
Chervonenkis
(VC)-Bound

36

� Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 
points satisfies 

𝑀 = 𝑂
1
𝜖
𝑑78 ℋ log

1
𝜖
+ log

1
𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 
,𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

� 𝑑78 ℋ is the VC-dimension of ℋ, a measure of how 

complex our hypothesis set is, suitable when ℋ = ∞
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