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Reminders

• Post-Exam Followup:
– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Tue, Oct 4
– Due: Thu, Oct 13 at 11:59pm

• Homework 5: Neural Networks
– Out: Thu, Oct 13
– Due: Thu, Oct 27 at 11:59pm
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– Chain Rule of Calculus
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2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)

13

Chain Rule:
Given: 

…



Chain Rule

7

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK ! RJ and g : RJ ! RI ) f : RK ! RI . Given an input
vector x = {x1, x2, . . . , xK}, we compute the output y = {y1, y2, . . . , yI}, in terms of an
intermediate vector u = {u1, u2, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤ log q + (1 � y⇤) log(1 � q) (2.5)

where q = P✓(Yi = 1|x) = 1

1 + exp(�
PD

j=0 ✓jxj)
(2.6)

13

Chain Rule:
Given: 

…
Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)
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Backpropagation

Whiteboard
– From equation to forward computation
– Representing a simple function as a 

computation graph
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Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



BACKPROPAGATION FOR A 
COMPUTATION GRAPH

Algorithm

22



Backpropagation

Whiteboard
– Backprogation on a simple computation graph
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Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.
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Forward Backward

J = cos(u)
dJ

du
Y= �sin(u)

u = u1 + u2
dJ

du1
Y=

dJ

du

du

du1
,

du

du1
= 1

dJ

du2
Y=

dJ

du

du

du2
,

du

du2
= 1

u1 = sin(t)
dJ

dt
Y=

dJ

du1

du1

dt
,

du1

dt
= +Qb(t)

u2 = 3t
dJ

dt
Y=

dJ

du2

du2

dt
,

du2

dt
= 3

t = x2 dJ

dx
Y=

dJ

dt

dt

dx
,

dt

dx
= 2x

Simple Example: The goal is to compute J = +Qb(bBM(x2) + 3x2)
on the forward pass and the derivative dJ

dx on the backward pass.
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…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward

J = y� HQ; y + (1 � y�) HQ;(1 � y)
dJ

dy
=

y�

y
+

(1 � y�)

y � 1

y =
1

1 + 2tT(�a)

dJ

da
=

dJ

dy

dy

da
,

dy

da
=

2tT(�a)

(2tT(�a) + 1)2

a =
D�

j=0

�jxj
dJ

d�j
=

dJ

da

da

d�j
,

da

d�j
= xj

dJ

dxj
=

dJ

da

da

dxj
,

da

dxj
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…

Output

Input

θ1 θ2 θ3 θM

Case 1:
Logistic 
Regression

Forward Backward
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TRAINING / FORWARD COMPUTATION 
/ BACKWARD COMPUTATION

A 2-Hidden Layer Neural Network
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Backpropagation

Recall: Our 2-Hidden Layer Neural Network
Question: How do we train this model?
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Backpropagation

Whiteboard
– Example: Backpropagation for Neural Network 

with 2-Hidden Layers
• SGD Training
• Forward Computation
• Computation Graph
• Backward Computation
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TRAINING A NEURAL NETWORK
A 1-Hidden Layer Neural Network
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Training

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights
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SGD with Backprop
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Example: 1-Hidden Layer Neural Network



FORWARD COMPUTATION FOR A 
NEURAL NETWORK

A 1-Hidden Layer Neural Network
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SGD with Backprop
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Example: 1-Hidden Layer Neural Network
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A 1-Hidden Layer Neural Network
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Case 2:
Neural 
Network

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Derivative of a Sigmoid
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Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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Case 2:
Neural 
Network

…

…

Linear

Sigmoid

Linear

Sigmoid

Loss

Backpropagation
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SGD with Backprop
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Example: 1-Hidden Layer Neural Network
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Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures computing 

(dui/dvj) is easy)
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in 

the backward pass
2. Reuses partial derivatives throughout the 

backward pass (but only if the algorithm reuses 
shared computation in the forward pass)

(Key idea: partial derivatives in the backward 
pass should be thought of as variables stored 
for reuse)

59

Training



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

60

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



MATRIX CALCULUS
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Q&A
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Q: Do I need to know matrix calculus to derive the 
backprop algorithms used in this class?

A: Well, we’ve carefully constructed our assignments 
so that you do not need to know matrix calculus.

That said, it’s pretty handy. So we added matrix 
calculus to our learning objectives for backprop. 
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Types of 
Derivatives scalar vector matrix

scalar

vector

matrix

Numerator

De
no

m
in

at
or



Types of 
Derivatives scalar

scalar

vector

matrix

Matrix Calculus
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Types of 
Derivatives scalar vector

scalar

vector

Matrix Calculus
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Matrix Calculus
Whenever you read about matrix calculus, you’ll be confronted with two 
layout conventions:

66

In this course, we 
use denominator 

layout. 

Why? This 
ensures that our 
gradients of the 

objective 
function with 

respect to some 
subset of 

parameters are 
the same shape 

as those 
parameters.
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Question:

Answer:

Matrix Calculus

68

y

u

x

g

h

Suppose y = g(u) and u = h(x)

Which of the following is the 
correct definition of the chain rule?

Recall:


