10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Backpropagation

Matt Gormley

Lecture 13
Oct. 9, 2022

Reminders

- Post-Exam Followup:
- Exam Viewing
- Exit Poll: Exam 1
- Grade Summary 1
- Homework 4: Logistic Regression
- Out: Tue, Oct 4
- Due: Thu, Oct 13 at 11:59pm
- Homework 5: Neural Networks
- Out: Thu, Oct 13
- Due: Thu, Oct 27 at 11:59pm

THE CHAIN RULE OF CALCULUS

Training

Chain Rule

Whiteboard

- Chain Rule of Calculus

Training

Chain Rule

Given: $\boldsymbol{y}=g(\boldsymbol{u})$ and $\boldsymbol{u}=h(\boldsymbol{x})$.
Chain Rule:

$$
\frac{d y_{i}}{d x_{k}}=\sum_{j=1}^{J} \frac{d y_{i}}{d u_{j}} \frac{d u_{j}}{d x_{k}}, \quad \forall i, k
$$

Training

Chain Rule

Given: $\boldsymbol{y}=g(\boldsymbol{u})$ and $\boldsymbol{u}=h(\boldsymbol{x})$.
Chain Rule:

$$
\frac{d y_{i}}{d x_{k}}=\sum_{j=1}^{J} \frac{d y_{i}}{d u_{j}} \frac{d u_{j}}{d x_{k}}, \quad \forall i, k
$$

Intuitions

BACKPROPAGATION OF ERRORS

Error Back-Propagation

Slide from (Stoyanov \& Eisner, 2012)

Error Back-Propagation

Error Back-Propagation

Slide from (Stoyanov \& Eisner, 2012)

Algorithm

FORWARD COMPUTATION FOR A COMPUTATION GRAPH

Training

Backpropagation

Whiteboard

- From equation to forward computation
- Representing a simple function as a computation graph
Differentiation Quiz \#1:
Suppose $x=2$ and $z=3$, what are $d y / d x$ and $d y / d z$ for the function below? Round your answer to the nearest integer.

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{x z}
$$

Algorithm

BACKPROPAGATION FOR A COMPUTATION GRAPH

Training

Backpropagation

Whiteboard

- Backprogation on a simple computation graph

Differentiation Quiz \#1:

Suppose $x=2$ and $z=3$, what are $d y / d x$ and $d y / d z$ for the function below? Round your answer to the nearest integer.

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{x z}
$$

Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

```
Forward
J=\operatorname{cos(u)}
u=\mp@subsup{u}{1}{}+\mp@subsup{u}{2}{}
u}=\operatorname{sin}(t
u2 = 3t
t=\mp@subsup{x}{}{2}
```


Training

Backpropagation

Simple Example: The goal is to compute $J=\cos \left(\sin \left(x^{2}\right)+3 x^{2}\right)$ on the forward pass and the derivative $\frac{d J}{d x}$ on the backward pass.

| Forward | Backward |
| :--- | :--- | :--- |
| $J=\cos (u)$ | $\frac{d J}{d u}+=-\sin (u)$ |
| $u=u_{1}+u_{2}$ | $\frac{d J}{d u_{1}}+=\left(\frac{d J}{d u} \frac{d u}{d u_{1}}, \quad \frac{d u}{d u_{1}}=1 \quad \frac{d J}{d u_{2}}+=\frac{d J}{d u} \frac{d u}{d u_{2}}, \quad \frac{d u}{d u_{2}}=1\right.$ |
| $u_{1}=\sin (t)$ | $\frac{d J}{d t}+=\frac{d J}{d u_{1}} \frac{d u_{1}}{d t}, \quad \frac{d u_{1}}{d t}=\cos (t)$ |
| $u_{2}=3 t$ | $\frac{d J}{d t}+=\frac{d J}{d u_{2}} \frac{d u_{2}}{d t}, \quad \frac{d u_{2}}{d t}=3$ |
| $t=x^{2}$ | $\frac{d J}{d x}+=\frac{d J}{d t} \frac{d t}{d x}, \quad \frac{d t}{d x}=2 x$ |

Training

Backpropagation

Forward
$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$
$y=\frac{1}{1+\exp (-a)}$
$a=\sum_{j=0}^{D} \theta_{j} x_{j}$

Training

Backpropagation

Forward

$$
\begin{array}{l|l}
\text { Forward } & \begin{array}{l}
\text { Backward } \\
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)
\end{array} \\
\hline y=\frac{d J}{1+\exp (-a)}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
a=\sum_{j=0}^{D} \theta_{j} x_{j} & \frac{d J}{d a}=\frac{d J}{d y} \frac{d y}{d a}, \frac{d y}{d a}=\frac{\exp (-a)}{(\exp (-a)+1)^{2}} \\
\frac{d J}{d \theta_{j}}=\frac{d J}{d a} \frac{d a}{d \theta_{j}}, \frac{d a}{d \theta_{j}}=x_{j} \\
\frac{d J}{d x_{j}}=\frac{d J}{d a} \frac{d a}{d x_{j}}, \frac{d a}{d x_{j}}=\theta_{j}
\end{array}
$$

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network Question: How do we train this model?

$$
\begin{array}{ll}
\beta \in \mathbb{R}^{D_{2}} & y=\sigma\left(\vec{\beta}^{\top} \vec{z}^{(2)}+\beta_{0}\right) \\
\beta_{0} \in \mathbb{R} & \alpha^{(2)} \in \mathbb{R}_{1} \times D_{2} \\
\vec{b}^{(2)} \in \mathbb{R}^{D_{2}} & \vec{z}^{(2)}=\sigma\left(\left(\alpha^{(2)}\right)^{\top} \vec{z}^{(1)}+b^{(2)}\right) \\
\alpha^{(1)} \in \mathbb{R}^{M_{\times} D_{1}} & \vec{z}^{(1)}=\sigma\left(\left(\alpha^{(1)}\right)^{\top} \vec{z}+\vec{b}^{(1)}\right)
\end{array}
$$

Training
 Backpropagation

Whiteboard

- Example: Backpropagation for Neural Network with 2-Hidden Layers
- SGD Training
- Forward Computation
- Computation Graph
- Backward Computation

A 1-Hidden Layer Neural Network

TRAINING A NEURAL NETWORK

Training

Backpropagation

Training

Backpropagation

Training

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    : procedure \(\operatorname{SGD}\left(\right.\) Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
        Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
        for \(e \in\{1,2, \ldots, E\}\) do
        for \((\mathbf{x}, \mathrm{y}) \in \mathcal{D}\) do
            Compute neural network layers:
                \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                Compute gradients via backprop:
                \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                Update parameters:
                \(\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
        \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
        Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
        Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
    return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


A 1-Hidden Layer Neural Network

FORWARD COMPUTATION FOR A NEURAL NETWORK

Training

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    : procedure \(\operatorname{SGD}\left(\right.\) Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
        Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
        for \(e \in\{1,2, \ldots, E\}\) do
        for \((\mathbf{x}, \mathrm{y}) \in \mathcal{D}\) do
            Compute neural network layers:
                \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                Compute gradients via backprop:
                \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                Update parameters:
                \(\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
        \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
        Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
        Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
    return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


Training

Backpropagation

Training

Backpropagation

Training

Backpropagation

A 1-Hidden Layer Neural Network

BACKPROPAGATION FOR A NEURAL NETWORK

Training

Backpropagation

Training

Backpropagation

Training

Backpropagation

Case 2:
Neural
Network

Forward
$J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)$
$y=\frac{1}{1+\exp (-b)}$
$b=\sum_{j=0}^{D} \beta_{j} z_{j}$
$z_{j}=\frac{1}{1+\exp \left(-a_{j}\right)}$
$a_{j}=\sum_{i=0}^{M} \alpha_{j i} x_{i}$

Backward

$$
\begin{aligned}
& \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j} \\
& \frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}} \\
& \frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i} \\
& \frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
\end{aligned}
$$

Training

Backpropagation

(ase):

Forward

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)
$$

$$
y=\frac{1}{1+\exp (-b)}
$$

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

Sigmoid

Linear

Backward

$$
\begin{aligned}
& \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Derivative of a Sigmoid

First suppose that

$$
\begin{equation*}
s=\frac{1}{1+\exp (-b)} \tag{1}
\end{equation*}
$$

To obtain the simplified form of the derivative of a sigmoid.

$$
\begin{align*}
\frac{d s}{d b} & =\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \tag{2}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1+1-1)^{2}} \tag{3}\\
& =\frac{\exp (-b)+1-1}{(\exp (-b)+1)^{2}} \tag{4}\\
& =\frac{\exp (-b)+1}{(\exp (-b)+1)^{2}}-\frac{1}{(\exp (-b)+1)^{2}} \tag{5}\\
& =\frac{1}{(\exp (-b)+1)}-\frac{1}{(\exp (-b)+1)^{2}} \tag{6}\\
& =\frac{1}{(\exp (-b)+1)}-\left(\frac{1}{(\exp (-b)+1)} \frac{1}{(\exp (-b)+1)}\right) \tag{7}\\
& =\frac{1}{(\exp (-b)+1)}\left(1-\frac{1}{(\exp (-b)+1)}\right) \tag{8}\\
& =s(1-s)
\end{align*}
$$

(9)

Training

Backpropagation

Case):

Forward

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y)
$$

Loss
Sigmoid $\quad y=\frac{1}{1+\exp (-b)}$

Linear

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

Sigmoid

Linear

Backward

$$
\begin{aligned}
& \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1} \\
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=\frac{\exp (-b)}{(\exp (-b)+1)^{2}} \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=\frac{\exp \left(-a_{j}\right)}{\left(\exp \left(-a_{j}\right)+1\right)^{2}}
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Training

Backpropagation

Case):

Forward

$$
J=y^{*} \log y+\left(1-y^{*}\right) \log (1-y) \quad \frac{d J}{d y}=\frac{y^{*}}{y}+\frac{\left(1-y^{*}\right)}{y-1}
$$

Sigmoid $\quad y=\frac{1}{1+\exp (-b)}$

$$
b=\sum_{j=0}^{D} \beta_{j} z_{j}
$$

$$
\begin{aligned}
& \frac{d J}{d b}=\frac{d J}{d y} \frac{d y}{d b}, \frac{d y}{d b}=y(1-y) \\
& \frac{d J}{d \beta_{j}}=\frac{d J}{d b} \frac{d b}{d \beta_{j}}, \frac{d b}{d \beta_{j}}=z_{j} \\
& \frac{d J}{d z_{j}}=\frac{d J}{d b} \frac{d b}{d z_{j}}, \frac{d b}{d z_{j}}=\beta_{j}
\end{aligned}
$$

Sigmoid

Linear

$$
\begin{aligned}
z_{j} & =\frac{1}{1+\exp \left(-a_{j}\right)} \\
a_{j} & =\sum_{i=0}^{M} \alpha_{j i} x_{i}
\end{aligned}
$$

$$
\frac{d J}{d a_{j}}=\frac{d J}{d z_{j}} \frac{d z_{j}}{d a_{j}}, \frac{d z_{j}}{d a_{j}}=z_{j}\left(1-z_{j}\right)
$$

$$
\frac{d J}{d \alpha_{j i}}=\frac{d J}{d a_{j}} \frac{d a_{j}}{d \alpha_{j i}}, \frac{d a_{j}}{d \alpha_{j i}}=x_{i}
$$

$$
\frac{d J}{d x_{i}}=\sum_{j=0}^{D} \frac{d J}{d a_{j}} \frac{d a_{j}}{d x_{i}}, \frac{d a_{j}}{d x_{i}}=\alpha_{j i}
$$

Training

SGD with Backprop

Example: 1-Hidden Layer Neural Network

```
Algorithm 1 Stochastic Gradient Descent (SGD)
    : procedure \(\operatorname{SGD}\left(\right.\) Training data \(\mathcal{D}\), test data \(\mathcal{D}_{t}\) )
        Initialize parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
        for \(e \in\{1,2, \ldots, E\}\) do
        for \((\mathbf{x}, \mathrm{y}) \in \mathcal{D}\) do
            Compute neural network layers:
                \(\mathbf{o}=\operatorname{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J)=\operatorname{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})\)
                Compute gradients via backprop:
                \(\left.\begin{array}{l}\mathbf{g}_{\boldsymbol{\alpha}}=\nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}}=\nabla_{\boldsymbol{\beta}} J\end{array}\right\}=\operatorname{NNBACKWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o})\)
                Update parameters:
                \(\boldsymbol{\alpha} \leftarrow \boldsymbol{\alpha}-\gamma \mathbf{g}_{\boldsymbol{\alpha}}\)
        \(\boldsymbol{\beta} \leftarrow \boldsymbol{\beta}-\gamma \mathbf{g}_{\boldsymbol{\beta}}\)
        Evaluate training mean cross-entropy \(J_{\mathcal{D}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
        Evaluate test mean cross-entropy \(J_{\mathcal{D}_{t}}(\boldsymbol{\alpha}, \boldsymbol{\beta})\)
    return parameters \(\boldsymbol{\alpha}, \boldsymbol{\beta}\)
```


THE BACKPROPAGATION ALGORITHM

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(\mathbf{x})$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version A)

1. \quad Initialize $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node v_{i} in reverse topological order.

Let $\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{M}}$ denote all the nodes with v_{j} as an input
Assuming that $\mathrm{y}=\mathrm{h}(\mathrm{u})=\mathrm{h}\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{m}}\right)$
and $\mathbf{u}=\mathrm{g}(\mathbf{v})$ or equivalently $u_{i}=g_{i}\left(v_{1}, \ldots, v_{j}, \ldots, v_{N}\right)$ for all i
a. We already know dy/du for all i
b. Compute $d y / \mathrm{dv}_{\mathrm{j}}$ as below (Choice of algorithm ensures computing (duildvi) is easy)

$$
\frac{d y}{d v_{j}}=\sum_{i=1}^{M} \frac{d y}{d u_{i}} \frac{d u_{i}}{d v_{j}}
$$

Backpropagation

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function $y=f(\mathbf{x})$. The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
2. Visit each node in topological order.

For variable u_{i} with inputs v_{1}, \ldots, v_{N}
a. Compute $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
b. Store the result at the node

Backward Computation (Version B)

1. Initialize all partial derivatives $\mathrm{dy} / \mathrm{du}_{\mathrm{i}}$ to 0 and $\mathrm{dy} / \mathrm{dy}=1$.
2. Visit each node in reverse topological order.

For variable $u_{i}=g_{i}\left(v_{1}, \ldots, v_{N}\right)$
a. We already know dy/du
b. Increment $d y / d v_{j}$ by $\left(d y / d u_{i}\right)\left(d u_{i} / d v_{j}\right)$
(Choice of algorithm ensures computing $\left(\mathrm{du}_{\mathrm{i}} / \mathrm{d} \mathrm{v}_{\mathrm{j}}\right)$ is easy)

Training

Backpropagation

Why is the backpropagation algorithm efficient?

1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)
(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse)

Background

A Recine for

Gradients

1. Given training dat

$$
\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{i}\right\}_{i=1}^{N}
$$

Backpropagation can compute this gradient!
And it's a special case of a more general algorithm called reversemode automatic differentiation that

- Decision function $\hat{y}=f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right)$ can compute the gradient of any differentiable function efficiently!

opp-site the gradient)

- Loss function

$$
\ell\left(\hat{\boldsymbol{y}}, \boldsymbol{y}_{i}\right) \in \mathbb{R}
$$

$$
\theta\left(\square-\eta_{t} \nabla \ell\left(f_{\boldsymbol{\theta}}\left(\boldsymbol{x}_{i}\right), \boldsymbol{y}_{i}\right)\right.
$$

MATRIX CALCULUS

Q\&A

Q: Do I need to know matrix calculus to derive the backprop algorithms used in this class?

A: Well, we've carefully constructed our assignments so that you do not need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Matrix Calculus

Numerator

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{P}$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in$ $\mathbb{R}^{P \times Q}$ be matrices

	Types of Derivatives	scalar	vector	matrix
	scalar	$\frac{\partial y}{\partial x}$	$\frac{\partial y}{\partial x}$	$\frac{\partial \mathbf{Y}}{\partial x}$
	vector	$\frac{\partial y}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{x}}$
ס̀	matrix	$\frac{\partial y}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{y}}{\partial \mathbf{X}}$	$\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}$

Matrix Calculus

Types of Derivatives	scalar
scalar	$\frac{\partial y}{\partial x}=\left[\frac{\partial y}{\partial x}\right]$
vector	$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$
matrix	$\frac{\partial y}{\partial \mathbf{X}}=\left[\begin{array}{cccc}\frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1 Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2 Q}} \\ \vdots & & & \vdots \\ \frac{\partial y}{\partial X_{P 1}} & \frac{\partial y}{\partial X_{P 2}} & \cdots & \frac{\partial y}{\partial X_{P Q}}\end{array}\right]$

Matrix Calculus

denomutr layout

Matrix Calculus

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^{M}$ and $\mathbf{x} \in \mathbb{R}^{P}$ be vectors.

1. In numerator layout:

$$
\begin{aligned}
& \frac{\partial y}{\partial \mathbf{x}} \text { is a } 1 \times P \text { matrix, i.e. a row vector } \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text { is an } M \times P \text { matrix }
\end{aligned}
$$

2. In denominator layout:

$$
\begin{aligned}
& \frac{\partial y}{\partial \mathbf{x}} \text { is a } P \times 1 \text { matrix, i.e. a column vector } \\
& \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text { is an } P \times M \text { matrix }
\end{aligned}
$$

In this course, we use denominator layout.

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

Matrix Calculus

Common Vector Derivatives
Let $\frac{\partial f(\vec{x})}{\partial \vec{x}}=\nabla_{x} f(\vec{x})$ be the vector derivative $f f, \underset{x \in \mathbb{R}^{m}}{m_{x n}}$

Matrix Calculus

Question:

Suppose $y=g(\mathbf{u})$ and $\mathbf{u}=\mathrm{h}(\mathbf{x})$

Which of the following is the correct definition of the chain rule?

Recall:
$\frac{\partial y}{\partial \mathbf{x}}=\left[\begin{array}{c}\frac{\partial y}{\partial x_{1}} \\ \frac{\partial y}{\partial x_{2}} \\ \vdots \\ \frac{\partial y}{\partial x_{P}}\end{array}\right]$

$$
\frac{\partial \mathbf{y}}{\partial \mathbf{x}}=\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{1}} & \cdots & \frac{\partial y_{N}}{\partial x_{1}} \\
\frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{2}} \\
\vdots & & & \\
\frac{\partial y_{1}}{\partial x_{P}} & \frac{\partial y_{2}}{\partial x_{P}} & \cdots & \frac{\partial y_{N}}{\partial x_{P}}
\end{array}\right]
$$

Answer: $\frac{\partial y}{\partial x}=\ldots$

