

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Backpropagation

Matt Gormley Lecture 13 Oct. 9, 2022

Reminders

- Post-Exam Followup:
 - Exam Viewing
 - Exit Poll: Exam 1
 - Grade Summary 1
- Homework 4: Logistic Regression
 - Out: Tue, Oct 4
 - Due: Thu, Oct 13 at 11:59pm
- Homework 5: Neural Networks
 - Out: Thu, Oct 13
 - Due: Thu, Oct 27 at 11:59pm

THE CHAIN RULE OF CALCULUS

Chain Rule

Whiteboard

– Chain Rule of Calculus

Chain Rule

Given:
$$y = g(u)$$
 and $u = h(x)$.
Chain Rule:
 $\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$

Chain Rule

Given:
$$y = g(u)$$
 and $u = h(x)$.
Chain Rule:

$$\frac{dy_i}{dx_k} = \sum_{j=1}^J \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

Backpropagation is just repeated application of the chain rule from Calculus 101.

Intuitions

BACKPROPAGATION OF ERRORS

FORWARD COMPUTATION FOR A COMPUTATION GRAPH

Algorithm

Backpropagation

Whiteboard

- From equation to forward computation
- Representing a simple function as a computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? **Round your answer to the nearest integer.**

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

BACKPROPAGATION FOR A COMPUTATION GRAPH

Algorithm

Backpropagation

Whiteboard

- Backprogation on a simple computation graph

Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? **Round your answer to the nearest integer.**

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

Backpropagation

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Backpropagation

Simple Example: The goal is to compute $J = cos(sin(x^2) + 3x^2)$ on the forward pass and the derivative $\frac{dJ}{dx}$ on the backward pass.

Training	Backpropagation		
Case 1: Logistic Regression	θ_2 θ_3 θ_M X ₂ X ₃ X _M		
Forward	Backward		
$J = y^* \log y + (1 - y^*) \log(1)$	$(1-y) \frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$		
$y = \frac{1}{1 + \exp(-a)}$	$\frac{dJ}{da} = \frac{dJ}{dy}\frac{dy}{da}, \ \frac{dy}{da} = \frac{\exp(-a)}{(\exp(-a)+1)^2}$		
$a = \sum_{j=0}^{D} \theta_j x_j$	$\frac{dJ}{d\theta_j} = \frac{dJ}{da} \frac{da}{d\theta_j}, \ \frac{da}{d\theta_j} = x_j$ $\frac{dJ}{dJ} = \frac{dJ}{dJ} \frac{da}{d\theta_j} = dJ$		
	$\frac{dx_j}{dx_j} = \frac{dx_j}{da} \frac{dx_j}{dx_j}, \ \frac{dx_j}{dx_j} = \theta_j$		

A 2-Hidden Layer Neural Network

TRAINING / FORWARD COMPUTATION / BACKWARD COMPUTATION

Training Backpropagation

Recall: Our 2-Hidden Layer Neural Network **Question:** How do we train this model?

Training Backpropagation

Whiteboard

- Example: Backpropagation for Neural Network
 with 2-Hidden Layers
 - SGD Training
 - Forward Computation
 - Computation Graph
 - Backward Computation

A 1-Hidden Layer Neural Network

TRAINING A NEURAL NETWORK

Backpropagation

33

SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)			
1: procedure SGD(Training data \mathcal{D}_t test data \mathcal{D}_t)			
2: Initialize parameters $oldsymbol{lpha},oldsymbol{eta}$			
3: for $e \in \{1, 2, \dots, E\}$ do			
4: for $(\mathbf{x},\mathbf{y})\in\mathcal{D}$ do			
5: Compute neural network layers:			
6: $\mathbf{o} = \texttt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \texttt{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})$			
7: Compute gradients via backprop:			
8: $ \left. \begin{array}{c} \mathbf{g}_{\alpha} = \nabla_{\alpha} J \\ \mathbf{g}_{\beta} = \nabla_{\beta} J \end{array} \right\} = NNBACKWARD(\mathbf{x}, \mathbf{y}, \alpha, \beta, \mathbf{o}) $			
9: Update parameters:			
10: $oldsymbol{lpha} \leftarrow oldsymbol{lpha} - \gamma \mathbf{g}_{oldsymbol{lpha}}$			
11: $oldsymbol{eta} \leftarrow oldsymbol{eta} - \gamma \mathbf{g}_{oldsymbol{eta}}$			
12: Evaluate training mean cross-entropy $J_{\mathcal{D}}(oldsymbol{lpha},oldsymbol{eta})$			
13: Evaluate test mean cross-entropy $J_{\mathcal{D}_t}(oldsymbollpha,oldsymboleta)$			
14: return parameters $oldsymbol{lpha},oldsymbol{eta}$			

A 1-Hidden Layer Neural Network

FORWARD COMPUTATION FOR A NEURAL NETWORK

SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)			
1: procedure SGD(Training data \mathcal{D}_t test data \mathcal{D}_t)			
2: Initialize parameters $oldsymbol{lpha},oldsymbol{eta}$			
3: for $e \in \{1, 2, \dots, E\}$ do			
4: for $(\mathbf{x},\mathbf{y})\in\mathcal{D}$ do			
5: Compute neural network layers:			
6: $\mathbf{o} = \texttt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = \texttt{NNFORWARD}(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta})$			
7: Compute gradients via backprop:			
8: $ \left. \begin{array}{c} \mathbf{g}_{\boldsymbol{\alpha}} = \nabla_{\boldsymbol{\alpha}} J \\ \mathbf{g}_{\boldsymbol{\beta}} = \nabla_{\boldsymbol{\beta}} J \end{array} \right\} = NNBACKWARD(\mathbf{x}, \mathbf{y}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{o}) $			
9: Update parameters:			
10: $oldsymbol{lpha} \leftarrow oldsymbol{lpha} - \gamma \mathbf{g}_{oldsymbol{lpha}}$			
11: $oldsymbol{eta} \leftarrow oldsymbol{eta} - \gamma \mathbf{g}_{oldsymbol{eta}}$			
12: Evaluate training mean cross-entropy $J_{\mathcal{D}}(oldsymbol{lpha},oldsymbol{eta})$			
13: Evaluate test mean cross-entropy $J_{\mathcal{D}_t}(oldsymbol{lpha},oldsymbol{eta})$			
14: return parameters $oldsymbol{lpha},oldsymbol{eta}$			

Backpropagation

39

A 1-Hidden Layer Neural Network

BACKPROPAGATION FOR A NEURAL NETWORK

Backpropagation

48

Backpropagation

Case 2: Neural Network

Output yWeights β_1 β_2 Hidden Layer z_1 z_2 Weights a_{11} a_{21} a_{12} a_{22} a_{13} a_{23} Input x_1 x_2 x_3

Forward

$$J = y^* \log y + (1 - y^*) \log(1 - y)$$

$$y = \frac{1}{1 + \exp(-b)}$$

$$b = \sum_{j=0}^{D} \beta_j z_j$$

$$z_j = \frac{1}{1 + \exp(-a_j)}$$

$$a_j = \sum_{i=0}^{M} \alpha_{ji} x_i$$

Backward

$$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$$

$$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$$

$$\frac{dJ}{d\beta_j} = \frac{dJ}{db}\frac{db}{d\beta_j}, \frac{db}{d\beta_j} = z_j$$

$$\frac{dJ}{dz_j} = \frac{dJ}{db}\frac{db}{dz_j}, \frac{db}{dz_j} = \beta_j$$

$$\frac{dJ}{da_j} = \frac{dJ}{dz_j}\frac{dz_j}{da_j}, \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$$

$$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j}\frac{da_j}{d\alpha_{ji}}, \frac{da_j}{d\alpha_{ji}} = x_i$$

$$\frac{dJ}{dx_i} = \sum_{j=0}^{D}\frac{dJ}{da_j}\frac{da_j}{dx_i}, \frac{da_j}{dx_i} = \alpha_{ji}$$
50

Backpropagation

Case 2:	Forward	Backward		
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$		
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$		
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \ \frac{db}{dz_j} = \beta_j$		
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$		
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \alpha_{ji}$		

Derivative of a Sigmoid

First suppose that

=

$$s = \frac{1}{1 + \exp(-b)} \tag{1}$$

To obtain the simplified form of the derivative of a sigmoid.

$$\frac{ds}{db} = \frac{\exp(-b)}{(\exp(-b) + 1)^2}$$
(2)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1+1-1)^2}$$
(3)

$$=\frac{\exp(-b)+1-1}{(\exp(-b)+1)^2}$$
(4)

$$=\frac{\exp(-b)+1}{(\exp(-b)+1)^2} - \frac{1}{(\exp(-b)+1)^2}$$
(5)

$$\frac{1}{(\exp(-b)+1)} - \frac{1}{(\exp(-b)+1)^2}$$
(6)

$$=\frac{1}{(\exp(-b)+1)} - \left(\frac{1}{(\exp(-b)+1)}\frac{1}{(\exp(-b)+1)}\right)$$
(7)

$$= \frac{1}{(\exp(-b)+1)} \left(1 - \frac{1}{(\exp(-b)+1)} \right)$$
(8)
= $s(1-s)$ (9)

52

Backpropagation

Case 2:	Forward	Backward $\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$			
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$				
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = \frac{\exp(-b)}{(\exp(-b)+1)^2}$			
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \ \frac{db}{dz_j} = \beta_j$			
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = \frac{\exp(-a_j)}{(\exp(-a_j)+1)^2}$			
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \alpha_{ji}$			

Backpropagation

Case 2:	Forward	Backward			
Loss	$J = y^* \log y + (1 - y^*) \log(1 - y)$	$\frac{dJ}{dy} = \frac{y^*}{y} + \frac{(1-y^*)}{y-1}$			
Sigmoid	$y = \frac{1}{1 + \exp(-b)}$	$\frac{dJ}{db} = \frac{dJ}{dy}\frac{dy}{db}, \ \frac{dy}{db} = y(1-y)$			
Linear	$b = \sum_{j=0}^{D} \beta_j z_j$	$\frac{dJ}{d\beta_j} = \frac{dJ}{db} \frac{db}{d\beta_j}, \ \frac{db}{d\beta_j} = z_j$ $\frac{dJ}{dz_j} = \frac{dJ}{db} \frac{db}{dz_j}, \ \frac{db}{dz_j} = \beta_j$			
Sigmoid	$z_j = \frac{1}{1 + \exp(-a_j)}$	$\frac{dJ}{da_j} = \frac{dJ}{dz_j} \frac{dz_j}{da_j}, \ \frac{dz_j}{da_j} = z_j(1-z_j)$			
Linear	$a_j = \sum_{i=0}^M \alpha_{ji} x_i$	$\frac{dJ}{d\alpha_{ji}} = \frac{dJ}{da_j} \frac{da_j}{d\alpha_{ji}}, \ \frac{da_j}{d\alpha_{ji}} = x_i$ $\frac{dJ}{dx_i} = \sum_{j=0}^{D} \frac{dJ}{da_j} \frac{da_j}{dx_i}, \ \frac{da_j}{dx_i} = \alpha_{ji}$			

SGD with Backprop

Example: 1-Hidden Layer Neural Network

Algorithm 1 Stochastic Gradient Descent (SGD)			
1:	procedure SGD(Training data \mathcal{D} , test data \mathcal{D}_t)		
2:	Initialize parameters $oldsymbol{lpha},oldsymbol{eta}$		
3:	for $e \in \{1,2,\ldots,E\}$ do		
4:	for $(\mathbf{x},\mathbf{y})\in\mathcal{D}$ do		
5:	Compute neural network layers:		
6:	$\mathbf{o} = \texttt{object}(\mathbf{x}, \mathbf{a}, \mathbf{b}, \mathbf{z}, \hat{\mathbf{y}}, J) = NNFORWARD(\mathbf{x}, \mathbf{y}, oldsymbol{lpha}, oldsymbol{eta})$		
7:	Compute gradients via backprop:		
8:	$egin{array}{l} \mathbf{g}_{oldsymbol{lpha}} = abla_{oldsymbol{lpha}} J \ \mathbf{g}_{oldsymbol{eta}} = abla_{oldsymbol{eta}} J \end{array} = NNBACKWARD(\mathbf{x},\mathbf{y},oldsymbol{lpha},oldsymbol{eta},\mathbf{o})$		
9:	Update parameters:		
10:	$oldsymbol{lpha} \leftarrow oldsymbol{lpha} - \gamma \mathbf{g}_{oldsymbol{lpha}}$		
11:	$oldsymbol{eta} \leftarrow oldsymbol{eta} - \gamma \mathbf{g}_{oldsymbol{eta}}$		
12:	Evaluate training mean cross-entropy $J_{\mathcal{D}}(oldsymbollpha,oldsymboleta)$		
13:	Evaluate test mean cross-entropy $J_{\mathcal{D}_{m{t}}}(m{lpha},m{eta})$		
14:	return parameters $oldsymbol{lpha},oldsymbol{eta}$		

THE BACKPROPAGATION ALGORITHM

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a 1. directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in **topological order**. 2. For variable u_i with inputs v_1, \ldots, v_N a. Compute $u_i = g_i(v_1, \ldots, v_N)$ b. Store the result at the node

Backward Computation (Version A)

- **Initialize** dy/dy = 1. 1.
- 2.

Visit each node v_j in **reverse topological order**. Let u_1, \ldots, u_M denote all the nodes with v_j as an input Assuming that $y = h(\mathbf{u}) = h(u_1, ..., u_M)$ and $\mathbf{u} = g(\mathbf{v})$ or equivalently $u_i = g_i(v_1, ..., v_j, ..., v_N)$ for all i a. We already know dy/du_i for all i

- b. Compute dy/dv_i as below (Choice of algorithm ensures computing (du_i/dv_i) is easy)

$$\frac{dy}{dv_j} = \sum_{i=1}^{M} \frac{dy}{du_i} \frac{du_i}{dv_j}$$

Return partial derivatives dy/du_i for all variables

Backpropagation

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a 1. directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- Visit each node in topological order. 2. For variable u_i with inputs v_1, \ldots, v_N a. Compute $u_i = g_i(v_1, \ldots, v_N)$ b. Store the result at the node

Backward Computation (Version B)

- **Initialize** all partial derivatives dy/du_i to 0 and dy/dy = 1. 1.
- Visit each node in reverse topological order. 2.

 - For variable $u_i = g_i(v_1, ..., v_N)$ a. We already know dy/du_i b. Increment dy/dv_j by (dy/du_i)(du_i/dv_j) (Choice of algorithm ensures computing (du_i/dv_j) is easy)

Backpropagation

Why is the backpropagation algorithm efficient?

- 1. Reuses **computation from the forward pass** in the backward pass
- 2. Reuses **partial derivatives** throughout the backward pass (but only if the algorithm reuses shared computation in the forward pass)

(Key idea: partial derivatives in the backward pass should be thought of as variables stored for reuse) Background

A Recipe for Gradients

1. Given training dat $\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$

2. Choose each of the

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

Backpropagation can compute this gradient!

And it's a **special case of a more general algorithm** called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} = -\eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i),oldsymbol{y})$$

MATRIX CALCULUS

Q: Do I need to know **matrix calculus** to derive the backprop algorithms used in this class?

A: Well, we've carefully constructed our assignments so that you do **not** need to know matrix calculus.

That said, it's pretty handy. So we added matrix calculus to our learning objectives for backprop.

Numerator

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors, and $\mathbf{Y} \in \mathbb{R}^{M \times N}$ and $\mathbf{X} \in \mathbb{R}^{P \times Q}$ be matrices

Types of scalar vector matrix Derivatives $\partial \mathbf{Y}$ $rac{\partial \mathbf{y}}{\partial x}$ $\frac{\partial y}{\partial y}$ $\overline{\partial x}$ scalar ∂x ∂y $rac{\partial \mathbf{y}}{\partial \mathbf{x}}$ $\partial \mathbf{Y}$ vector $\overline{\partial \mathbf{x}}$ $\partial \mathbf{x}$ Denominator $rac{\partial y}{\partial \mathbf{X}}$ $\partial \mathbf{y}$ $\partial \mathbf{Y}$ matrix $\overline{\partial \mathbf{X}}$ $\partial \mathbf{X}$

Types of Derivatives	scalar		
scalar	$\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x} \end{bmatrix}$		
vector	$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix}$		
matrix	$\frac{\partial y}{\partial \mathbf{X}} = \begin{bmatrix} \frac{\partial y}{\partial X_{11}} & \frac{\partial y}{\partial X_{12}} & \cdots & \frac{\partial y}{\partial X_{1Q}} \\ \frac{\partial y}{\partial X_{21}} & \frac{\partial y}{\partial X_{22}} & \cdots & \frac{\partial y}{\partial X_{2Q}} \\ \vdots & & \vdots \\ \frac{\partial y}{\partial X_{P1}} & \frac{\partial y}{\partial X_{P2}} & \cdots & \frac{\partial y}{\partial X_{PQ}} \end{bmatrix}$		

Matrix Calculus layout denominto Types of scalar vector Derivatives vec $\frac{\partial \mathbf{y}}{\partial x} = \left[\frac{\partial y_1}{\partial x}\right]$ $\frac{\partial y}{\partial x} =$ $rac{\partial y_2}{\partial x}$ $=\left[rac{\partial y}{\partial x} ight]$ $\frac{\partial y_N}{\partial x}\Big]$ scalar ∂y $\frac{\frac{\partial y_1}{\partial x_1}}{\frac{\partial y_1}{\partial x_2}}$ $\frac{\frac{\partial y_2}{\partial x_1}}{\frac{\partial y_2}{\partial x_2}}$ $\frac{\frac{\partial y_N}{\partial x_1}}{\frac{\partial y_N}{\partial x_2}}$ $\overline{ rac{\partial x_1}{\partial y} }$ ∂y $\frac{v}{\partial x_2}$ $rac{\partial \mathbf{y}}{\partial \mathbf{x}}$ $\partial \mathbf{x}$ vector $rac{\partial y_1}{\partial x_P}$ $rac{\partial y_2}{\partial x_P}$ $rac{\partial y_N}{\partial x_P}$ col vec. 65

Whenever you read about matrix calculus, you'll be confronted with two layout conventions:

Let $y, x \in \mathbb{R}$ be scalars, $\mathbf{y} \in \mathbb{R}^M$ and $\mathbf{x} \in \mathbb{R}^P$ be vectors.

1. In numerator layout:

$$\frac{\partial y}{\partial \mathbf{x}} \text{ is a } 1 \times P \text{ matrix, i.e. a row vector}$$
$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text{ is an } M \times P \text{ matrix}$$

2. In denominator layout:

$$\begin{array}{l} \displaystyle \frac{\partial y}{\partial \mathbf{x}} \text{ is a } P \times 1 \text{ matrix, i.e. a column vector} \\ \displaystyle \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \text{ is an } P \times M \text{ matrix} \end{array}$$

In this course, we use denominator layout.

Why? This ensures that our gradients of the objective function with respect to some subset of parameters are the same shape as those parameters.

Which of the following is the correct definition of the chain rule?

Recall: $\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial x} \end{bmatrix}$	$\begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_P} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \end{bmatrix}$	$= \begin{bmatrix} \frac{\partial y_1}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} \\ \vdots \\ \frac{\partial y_1}{\partial x_2} \end{bmatrix}$	$\frac{\partial y_2}{\partial x_1}$ $\frac{\partial y_2}{\partial x_2}$ $\frac{\partial y_2}{\partial x_2}$ $\frac{\partial y_2}{\partial x_2}$	· · · · · · ·	$\frac{\frac{\partial y_N}{\partial x_1}}{\frac{\partial y_N}{\partial x_2}}$ $\frac{\partial y_N}{\partial x_P}$
Answer: $\frac{\partial y}{\partial \mathbf{x}} = \dots$					
		A. $\frac{\partial y}{\partial u}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$		
		B. $\frac{\partial y}{\partial v}$	$\frac{\mathbf{u}^T}{\mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$		
		$C. \ \frac{\partial y}{\partial \mathbf{u}}$	$\frac{\partial \mathbf{u}^T}{\partial \mathbf{x}}$		
		D. $\frac{\partial y}{\partial v}$	$\frac{\mathbf{u}^T}{\mathbf{u}} \frac{\partial \mathbf{u}^T}{\partial \mathbf{x}}$		
		E. $\left(\frac{\partial}{\partial}\right)$	$\frac{y}{\mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}})^T$		
F. None of the above					
		(- = -	toxic		