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Reminders

• Post-Exam Followup:
– Exam Viewing
– Exit Poll: Exam 1
– Grade Summary 1

• Homework 4: Logistic Regression
– Out: Tue, Oct 4
– Due: Thu, Oct 13 at 11:59pm

• Homework 5: Neural Networks
– Out: Thu, Oct 13
– Due: Thu, Oct 27 at 11:59pm
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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BUILDING WIDER NETWORKS
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Building a Neural Net
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…

…

Output

Input

Hidden Layer

Q: How many hidden units, D, should we use?
The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D = M
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Building a Neural Net
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…

Output

Input

Hidden Layer

In the following examples, we have two input features, 
M=2, and we vary the number of hidden units, D.

The hidden units 
could learn to be…
• a selection of 

the most useful 
features

• nonlinear 
combinations 
of the features

• a lower 
dimensional 
projection of 
the features

• a higher 
dimensional 
projection of 
the features

• a copy of the 
input features

• a mix of the 
above

D ≥ M



DECISION BOUNDARY EXAMPLES
Examples 1 and 2
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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DECISION BOUNDARY EXAMPLES
Examples 3 and 4
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians

36



Example #3: Four Gaussians
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Example #3: Four Gaussians

40

hidden



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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BUILDING DEEPER NETWORKS
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Neural Net w/2 Hidden Layers
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Neural Net w/2 Hidden Layers
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Deeper Networks
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Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…Input

Hidden Layer 1
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Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks
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Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”
– After 2006: “Deep networks are easier to train than shallow 

networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Feature Learning
• Traditional feature 

engineering: build up 
levels of abstraction 
by hand

• Deep networks (e.g. 
convolution 
networks): learn the 
increasingly higher 
levels of abstraction 
from data
– each layer is a 

learned feature 
representation

– sophistication 
increases in higher 
layers

60
Figures from Lee et al. (ICML 2009)
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)
3. Type of activation function (nonlinearity)
4. Form of objective function
5. How to initialize the parameters
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ACTIVATION FUNCTIONS
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Activation Functions

66

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions
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Neural Network with arbitrary 
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Activation Functions
So far, we’ve 
assumed that the 
activation function 
(nonlinearity) is 
always the sigmoid 
function…

…but the sigmoid 
is not widely used 
in modern neural 
networks 
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Sigmoid (aka. logistic) function

Hyperbolic tangent function



Activation Functions
• sigmoid, σ(x)
– output in range 

(0,1)
– good for 

probabilistic 
outputs

• hyperbolic 
tangent, tanh(x)
– similar shape to 

sigmoid, but 
output in range (-
1,+1)
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Sigmoid (aka. logistic) function

Hyperbolic tangent function



AI Stats 2010

sigmoid 
vs. 
tanh

depth 5

Figure from Glorot & Bentio (2010)

depth 5
depth 5

depth 5
depth 5



Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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Activation Functions
• Rectified Linear Unit 

(ReLU)
– avoids the vanishing 

gradient problem
– derivative is fast to 

compute
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• Exponential Linear 
Unit (ELU)
– same as ReLU on 

positive inputs
– unlike ReLU, allows 

negative outputs and 
smoothly transitions 
for x < 0



Activation Functions
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1. Training loss 
converges 
fastest with 
ELU

2. ELU(x) yields 
lower test 
error than 
ReLU(x) on 
CIFAR-10

Image Classification Benchmark (CIFAR-10)

Figure from Clevert et al. (2016)



LOSS FUNCTIONS & OUTPUT 
LAYERS
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Neural Network for Classification
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(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

…

…

Output

Input

Hidden Layer



Neural Network for Regression
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(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

y…

…

Output

Input

Hidden Layer



Objective Functions for NNs
1. Quadratic Loss:

– the same objective as Linear Regression
– i.e. mean squared error
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2. Binary Cross-Entropy:
– the same objective as Binary Logistic Regression
– i.e. negative log likelihood
– This requires our output y to be a probability in [0,1]



Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss



Multiclass Output
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Output

Input

Hidden Layer
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Multiclass Output
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Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
2tT(bk)

�K
l=1 2tT(bl)

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Objective Functions for NNs
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3. Cross-Entropy for Multiclass Outputs:
– i.e. negative log likelihood for multiclass outputs
– Suppose output is a random variable Y that takes one of K values
– Let y(i) represent our true label as a one-hot vector:

– Assume our model outputs a length K vector of probabilities:

– Then we can write the log-likelihood of a single training example (x(i), y(i)) 
as:

0 00 00 …1 0
1 52 63 …4 K

y(i) = 

y = softmax(fscores(x, θ))



Neural Network Errors
Question X: For which of the datasets below 
does there exist a one-hidden layer neural 
network that achieves zero classification
error? Select all that apply.

82

Question Y: For which of the datasets 
below does there exist a one-hidden layer 
neural network for regression that achieves 
nearly zero MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary 

logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures

• Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing 
the architecture of a neural network

• Implement a feed-forward neural network
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APPROACHES TO 
DIFFERENTIATION

Computing Gradients
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

85

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



Approaches to 
Differentiation

• Question 1:
When can we compute the gradients for an 
arbitrary neural network?

• Question 2:
When can we make the gradient 
computation efficient?

87

Training



Approaches to 
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of 

backpropagation
– Con: Slow for high dimensional inputs / 

outputs
– Required: Ability to call the function f(x) on 

any input x
2. Symbolic Differentiation

– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha 

/ Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time 

if not carefully implemented
– Required: Mathematical expression that 

defines f(x)

88

Training



Approaches to 
Differentiation

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied 

to Neural Nets
– Pro: Computes partial derivatives of one 

output f(x)i with respect to all inputs xj in 
time proportional to computation of f(x)

– Con: Slow for high dimensional outputs (e.g. 
vector-valued functions)

– Required: Algorithm for computing f(x)
4. Automatic Differentiation - Forward Mode

– Note: Easy to implement. Uses dual 
numbers.

– Pro: Computes partial derivatives of all 
outputs f(x)i with respect to one input xj in 
time proportional to computation of f(x)

– Con: Slow for high dimensional inputs (e.g. 
vector-valued x)

– Required: Algorithm for computing f(x)

89

Training



THE FINITE DIFFERENCE METHOD
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Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon
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Training



Differentiation Quiz
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Training

A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]

E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Differentiation Quiz

Differentiation Quiz #2:

96

Training

…

…

…


