

10-301/601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Regularization +

Neural Networks

Matt Gormley Lecture 11 Oct. 3, 2022

Reminders

- Practice Problems: Exam 1
- Exam 1
 - Tue, Oct 4, 6:30pm 8:30pm
 - see Piazza for exam location
- Homework 4: Logistic Regression
 - Out: Tue, Oct 4
 - Due: Thu, Oct 13 at 11:59pm
- Be careful to submit to the correct submission slot on Gradescope!

Q&A

Q: Is this correct?

A: Oops! No.

k-NN Regression

Q: What are the k=2 nearest neighbors of the test point x'?

A: $x^{(2)}$ and $x^{(3)}$. So the output curve is actually discontinuous!

Algorithm 2: k=2 Nearest Neighbors Distance Weighted Regression

- Train: store all (x, y) pairs
- Predict: pick the nearest two instances x⁽ⁿ¹⁾ and x⁽ⁿ²⁾ in training data and return the weighted average of their y values

REGULARIZATION

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when k is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

 Occam's Razor: prefer the simplest hypothesis

- What does it mean for a hypothesis (or model) to be simple?
 - small number of features (model selection)
 - small number of "important" features (shrinkage)

- **Given** objective function: $J(\theta)$
- Goal is to find: $\hat{\boldsymbol{\theta}} = \operatorname{argmin} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$
- **Key idea:** Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple
- Choose form of $r(\theta)$:
 - **Choose form of r(\Theta):** Example: q-norm (usually p-norm): $\|\boldsymbol{\theta}\|_q = \left(\sum_{m=1}^{M} |\theta_m|^q\right)^{\overline{q}}$

\overline{q}	$r(oldsymbol{ heta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
$\frac{1}{2}$	$ oldsymbol{ heta} _1 = \sum heta_m \ (oldsymbol{ heta} _2)^2 = \sum heta_m^2$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

Regularization Examples

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

$$J_{\mathsf{RR}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_2^2$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2 + \lambda \sum_{m=1}^{M} \theta_m^2$$

Add an L1 regularizer to Linear Regression (aka. LASSO)

$$J_{\text{LASSO}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_{1}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} + \lambda \sum_{m=1}^{M} |\theta_{m}|$$

Regularization Examples

Add an L2 regularizer to Logistic Regression

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_2^2$$

$$= \frac{1}{N} \sum_{i=1}^N -\log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}) + \lambda \sum_{m=1}^M \theta_m^2$$

Add an L1 regularizer to Logistic Regression

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_{1}$$

$$= \frac{1}{N} \sum_{i=1}^{N} -\log p(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta}) + \lambda \sum_{m=1}^{M} |\theta_{m}|$$

Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As λ increases, the minimum of J'(θ) will...

- A. ... move towards the midpoint between $J(\theta)$ and $r(\theta)$
- B. ... move towards the minimum of $J(\theta)$
- C. ... move towards the minimum of $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same

Whiteboard

– Why does L2 regularization lead to small numbers and L1 regularization lead to zeros?

Don't Regularize the Bias (Intercept) Parameter!

- In our models so far, the bias / intercept parameter is usually denoted by θ_0 -- that is, the parameter for which we fixed $x_0=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

Whitening Data

- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

Regularization Exercise

In-class Exercise

- 1. Plot train error vs. regularization weight (cartoon)
- 2. Plot validation error vs. regularization weight (cartoon)

REGULARIZATION EXAMPLE: LOGISTIC REGRESSION

- For this example, we construct nonlinear features (i.e. feature engineering)
- Specifically, we add
 polynomials up to order 9 of
 the two original features x₁
 and x₂
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

OPTIMIZATION FOR L1 REGULARIZATION

Optimization for L1 Regularization

Can we apply SGD to the LASSO learning problem?

$$argmin_{oldsymbol{ heta}} J_{\mathrm{LASSO}}(oldsymbol{ heta})$$

$$J_{\text{LASSO}}(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda ||\boldsymbol{\theta}||_{1}$$

$$= \frac{1}{2} \sum_{i=1}^{N} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} + \lambda \sum_{k=1}^{K} |\boldsymbol{\theta}_{k}|$$

Optimization for L1 Regularization

Consider the absolute value function:

$$r(\boldsymbol{\theta}) = \lambda \sum_{k=1}^{K} |\theta_k|$$

 The L1 penalty is subdifferentiable (i.e. not differentiable at o)

Def: A vector $g \in \mathbb{R}^M$ is called a **subgradient** of a function $f(\mathbf{x})$: $\mathbb{R}^M \to \mathbb{R}$ at the point \mathbf{x} if, for all $\mathbf{x}' \in \mathbb{R}^M$, we have:

$$f(\mathbf{x}') \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{x}' - \mathbf{x})$$

Optimization for L1 Regularization

- The L1 penalty is subdifferentiable (i.e. not differentiable at o)
- An array of optimization algorithms exist to handle this issue:
 - Subgradient descent
 - Stochastic subgradient descent
 - Coordinate Descent
 - Othant-Wise Limited memory Quasi-Newton (OWL-QN)
 (Andrew & Gao, 2007) and provably convergent variants
 - Block coordinate Descent (Tseng & Yun, 2009)
 - Sparse Reconstruction by Separable Approximation (SpaRSA) (Wright et al., 2009)
 - Fast Iterative Shrinkage Thresholding Algorithm (FISTA) (Beck & Teboulle, 2009)

Basically the same as GD and SGD, but you use one of the subgradients when necessary

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum a-posteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

- 1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features are require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4. Regularization** and **MAP estimation** are equivalent for appropriately chosen priors

Feature Engineering / Regularization Objectives

You should be able to...

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Explain why we should not regularize the bias term
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas

NEURAL NETWORKS

Background

A Recipe for Machine Learning

1. Given training data:

$$\{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

Face Face Not a face

Examples: Linear regression, Logistic regression, Neural Network

Examples: Mean-squared error, Cross Entropy

Background

A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

3. Define goal:

$$oldsymbol{ heta}^* = rg \min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

- 2. Choose each of these:
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{oldsymbol{y}}, oldsymbol{y}_i) \in \mathbb{R}$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

Background

A Recipe for Gradients

1. Given training dat

$$\{oldsymbol{x}_i,oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of the
 - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Backpropagation can compute this gradient!

And it's a special case of a more general algorithm called reversemode automatic differentiation that can compute the gradient of any differentiable function efficiently!

opposite the gradient)
$$oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

A Recipe for

Goals for Today's Lecture

- 1. Explore a new class of decision functions (Neural Networks)
 - 2. Consider variants of this recipe for training

2. Choose each of these:

Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}}, m{y}_i) \in \mathbb{R}$$

Train with SGD:

ke small steps
opposite the gradient)

$$oldsymbol{ heta}^{(t+1)} = oldsymbol{ heta}^{(t)} - \eta_t
abla \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

Linear Regression

Logistic Regression

Perceptron

COMPONENTS OF A NEURAL NETWORK

Neural Network

Suppose we already learned the weights of the neural network.

To make a new prediction, we take in some new features (aka. the input layer) and perform the feed-forward computation.

Neural Network

$$.62 = \sigma(.50)$$

$$.50 = 13(.1) + 2(.3) + 7(-.2)$$

Neural Network

$$.57 = \sigma(.29)$$
$$.29 = .62(-.7) + .80(.9)$$

Neural Network

$$.57 = \sigma(.29)$$
$$.29 = .62(-.7) + .80(.9)$$

$$.80 = \sigma(1.4)$$

$$1.4 = 13(-.4) + 2(.5) + 7(.8)$$

$$.62 = \sigma(.50)$$

$$.50 = 13(.1) + 2(.3) + 7(-.2)$$

Neural Network

Except we only have the target value for y at training time!

We have to learn to create "useful" values of z_1 and z_2 in the hidden layer.

From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...

Biological "Model"

- Neuron: an excitable cell
- **Synapse:** connection between neurons
- A neuron sends an electrochemical pulse along its synapses when a sufficient voltage change occurs
- Biological Neural Network: collection of neurons along some pathway through the brain

Artificial Model

- Neuron: node in a directed acyclic graph (DAG)
- Weight: multiplier on each edge
- Activation Function: nonlinear thresholding function, which allows a neuron to "fire" when the input value is sufficiently high
- Artificial Neural Network: collection of neurons into a DAG, which define some differentiable function

Biological "Computation"

- Neuron switching time: ~ 0.001 sec
- Number of neurons: ~ 10¹⁰
- Connections per neuron: ~ 10⁴⁻⁵
- Scene recognition time: ~ 0.1 sec

Artificial Computation

- Many neuron-like threshold switching units
- Many weighted interconnections among units
- Highly parallel, distributed processes

DEFINING A 1-HIDDEN LAYER NEURAL NETWORK

Neural Networks

Chalkboard

Example: Neural Network w/1 Hidden Layer

NONLINEAR DECISION BOUNDARIES AND NEURAL NETWORKS

Logistic Regression

Logistic Regression

Neural Networks

Chalkboard

- 1D Example from linear regression to logistic regression
- 1D Example from logistic regression to a neural network

Logistic Regression

Logistic Regression

Neural Network Parameters

Question:

Suppose you are training a one-hidden layer neural network with sigmoid activations for binary classification.

True or False: There is a unique set of parameters that maximize the likelihood of the dataset above.

Answer: