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Reminders

* Practice Problems: Exam 1
* Exam 1
— Tue, Oct 4, 6:30pm - 8:30pm
— see Piazza for exam location

* Homework 4: Logistic Regression
— Out: Tue, Oct 4
— Due: Thu, Oct 13 at 11:59pm




Q&A

k-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
outputy Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
Algorithm 2 itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x(")
A in training data and return
X () the weighted average of
their y values

A: Oops! No.



K-NN Regression

Example: Dataset with only :
one feature x and one scalar Q: What are the k=2 nearest neighbors

outputy of the test point x”?

A: x®@) and x),
So the output curve is actually
? discontinuous!

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
. > in training data and return

I
l
I
l
I
I
(

|
(D @ x@  x@ xG) () * the weighted average of
X’ their y values



REGULARIZATION



Overtitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)

2. small number of “important” features
(shrinkage)



Regularization

Given objective function: J(0)
Goal is to find: 0 = argmin J(8) + \r(0)
6

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

1
Choose form of r(0): M q
— Example: g-norm (usually p-norm): 10|, = (Z |9m|q>

m=1

q 7(0) yields parame- name  optimization notes
ters that are...
0 ||@|lo => 1(0m #0) zerovalues Loreg. no good computa-
tional solutions
L ||0]]1 =] |0m] zero values Lireg. subdifferentiable

2 (||8]]2)% =362 small values L2reg. differentiable




Regularization Examples

Add an L2 regularizer to Linear Regression (aka. Ridge Regression)

Jaa(8) = J(0) 4A||e||2

N
1=1

Add an L1 regularizer to Linear Regression (aka. LASSO)

Jiasso(0) = J(0) +

1 X1 . . M
=N 23 @ A D, o
=1 m=1

Al16]]x




Regularization Examples

Add an L2 regularizer to Logistic Regression

7'(0) = 7(0) X 10]

1 i i
=+ 2 —logp(® | xV,0) HA > 07,

1=1 m=1

Add an L1 regularizer to Logistic Regression

7'(6) = 7(8) + ] |

N
1 . .
=N E :—logp(y(z) |X(Z)79) HA E |0

1=1 m=1

14



Regularization

Question:

Suppose we are minimizing J’(8) where
J'(0) = J(0)+ Ar(0)

As A increases, the minimum of J’(6)

will...

A. ...move towards the midpoint
between J(8) and r(6)

B. ...move towards the minimum of J(8)

C. ...move towards the minimum of r(8)

D. ...move towards a theta vector of

positive infinities

E. ...move towards atheta vector of
negative infinities

F. ...staythesame

_

r(6)

S

7
N\
161

NN
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Regularization

Whiteboard

— Why does L2 regularization lead to small
numbers and L1 regularization lead to zeros?



Regularization

Don’t Regularize the Bias (Intercept) Parameter!

* In our models so far, the bias | intercept parameter is
usually denoted by 6, -- that is, the parameter for which
we fixed x, = 1

* Regularizers always avoid penalizing this bias / intercept
parameter

* Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data
* It’s common to whiten each feature by subtracting its
mean and dividing by its variance

* Forregularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)




Regularization Exercise




REGULARIZATION EXAMPLE:
LOGISTIC REGRESSION



Example: Logistic Regression

3-

* For this example, we
construct nonlinear features

Tr;'”t'”g (i.e. feature engineering)
T * Specifically, we add
polynomials up to order 9 of
the two original features x,
CL L b : ; ; . and X,
* Thus our classifier is linear in
T 1 the high-dimensional
) S5 P | feature space, but the
e T decision boundary is
Test — LTToRMERR T nonlinear when visualized in
Data e L low-dimensions (i.e. the
BN original two dimensions)



Example: Logistic Regression

~ Classification with Logistic Regression (lambda=1e-05)
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Example: Logistic Regression

~ Classification with Logistic Regression (lambda=0.0001)




Example: Logistic Regression

- Classification with Logistic Regression (lambda=0.001)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.01)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=0.1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=10)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=100)
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Example: Logistic Regression

Classification with Logistic Regression (lambda=1000)
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Example: Logistic Regression

- Classification with Logistic Regression (lambda=10000)




Example: Logistic Regression

- Classification with Logistic Regression (lambda=100000)




Example: Logistic Regression

~ Classification with Logistic Regression (lambda=1e+06)




Example: Logistic Regression

- Classification with Logistic Regression (lambda=1e+07)




error

Example: Logistic Regression

0.45 -
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0.35 -
0.30 -
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—  test
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OPTIMIZATION FOR L1
REGULARIZATION



Optimization for L1 Regularization

Can we apply SGD to the LASSO learning
problem?

afg;niﬂ Jr.ass0(6)

Jrasso(0) = J(0) +|\||0]]

:%Z 0" x —yD)* Y 16|

1=1 k‘:l




Optimization for L1 Regularization

e Consider the absolute value function:
A

r(0) =X |64]

< >

* The L1 penalty is subdifferentiable (vi.e. not
differentiable at 0)

Def: A vector g € RM is called a subgradient of a function f(x) :
RM — R at the point x if, for all x’ € RM, we have:

f(x') > f(x) +g" (x' —x)



Optimization for L1 Regularization

* The L1 penalty is subdifferentiable (i.e. not
differentiable at 0)

* An array of optimization algorithms exist to handle

this issue: . Basically the same as GD
— Subgradient descent and SGD, but you use

— Stochastic subgradient descent one quthe subgradients
— Coordinate Descent when necessary

— Othant-Wise Limited memory Quasi-Newton (OWL-QN)
(Andrew & Gao, 2007) and provably convergent variants

— Block coordinate Descent (Tseng & Yun, 2009)

— Sparse Reconstruction by Separable Approximation
(SpaRSA) (Wright et al., 2009)

— Fast Iterative Shrinkage Thresholding Algorithm (FISTA)
(Beck & Teboulle, 2009)



Regularization as MAP

* L1and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation

of the parameters
e To be discussed later in the course...



1.

Takeaways

Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

Nonlinear features are require no changes
to the model (i.e. just preprocessing)

. Regularization helps to avoid overfitting
. Regularization and MAP estimation are

equivalent for appropriately chosen priors



Feature Engineering [ Regularization

Objectives
You should be able to...
* Engineer appropriate features for a new task

* Use feature selection techniques to identify and
remove irrelevant features

* |dentify when a model is overfitting

* Add aregularizer to an existing objective in order to
combat overfitting

* Explain why we should not regularize the bias term

* Convert linearly inseparable dataset to a linearly
separable dataset in higher dimensions

* Describe feature engineering in common application
areas



NEURAL NETWORKS



A Recipe for

Background : :
: Machine Learning

1. Given training data:

{wia Y, 7]5\;1

Face Face Not a face

2. Choose each of these:
— Decision function

A Examples: Linear regression,
'y — fe (',I"Z) Logistic regression, Neural Network
— Loss function

A Examples: Mean-squared error,
é(y, yz) E R Cross Entropy



A Recipe for

Background : :
Machine Learning

1. Given training data: 3. Define goal:

{@i Y}t 3

v Jifi=1 6" = arg mein;f(fe(wi), Y;)
2. Choose each of these:
— Decision function 4. Train with SGD:
y = fe(fl?z) (take small steps

opposite the gradient)
— Loss function

((9,y,) €ER 01 =01 — 0, VU(fo(xi), y;)



-V fo(xs),y;)




-0V fo(xs),y;)




Decision
Functions

Output

Linear Regression




Decision
Functions

Output

Logistic Regression

y = he(x) = (60" )

where o(a) =




Decision
Functions

Output

Perceptron




Decision
Functions

Output

Neural Network




COMPONENTS OF A NEURAL
NETWORK



Decision

Cnctons Neural Network

Suppose we already learned
the weights of the neural
network.

Output

Weights o
To make a new prediction, we

take in some new features
(aka. the input layer) and
perform the feed-forward
computation.

Hidden Layer

Weights

A

Input



Decision

- ctions Neural Network

Output

Weights

Hidden Layer

.62 =0(.50)

Weights S50=13(1)+2(3)+7(-2)

The computation of each
neural network unit resembles
binary logistic regression.



Decision

- ctions Neural Network

Output

Weights

80 = o(1.4)

Hidden Layer 1.4=13(-4) +2(5) + 7(.8)

Weights

The computation of each
neural network unit resembles
binary logistic regression.



Decision

- ctions Neural Network

37 =0(.29)
29 =.62(-.7) +.80(.9)

Output

Weights

Hidden Layer

Weights

The computation of each
neural network unit resembles
binary logistic regression.



Decision

- ctions Neural Network

37 =0(.29)
29 =.62(-.7) +.80(.9)

Output

Weights
80 =o0(1.4)
1.4=13(-4) +2(5)+7(8)

Hidden Layer

2 =.50 :
.62 =0(.50)
Weights ; ) . 50=13(1)+2(3) +7(-2)

The computation of each
neural network unit resembles
binary logistic regression.
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Decision

- nctions Neural Network

Output

Weights

Hidden Layer

Weights

The computation of each
neural network unit resembles
binary logistic regression.
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From Biological to Artificial

The motivation for Artificial Neural Networks comes from biology...

Biological “Model”

* Neuron: an excitable cell

* Synapse: connection between
neurons

* Aneuron sends an
electrochemical pulse along its
synapses when a sufficient voltage
change occurs

* Biological Neural Network:
collection of neurons along some
pathway through the brain

Biological “Computation”

* Neuron switching time: ~0.001sec
* Number of neurons: ~10'°

* Connections per neuron: ~ 104>

* Scenerecognition time: ~0.1sec

Slide adapted from Eric Xing

Nodes

Synapses
{(weights)

Impulss

Artificial Model

Neuron: node in a directed acyclic
graph (DAG)
Weight: multiplier on each edge

Activation Function: nonlinear
thresholding function, which allows a
neuron to “fire” when the input value

is sufficiently high
Artificial Neural Network: collection

of neurons into a DAG, which define
some differentiable function

Artificial Computation

Many neuron-like threshold switching
units

Many weighted interconnections
among units

Highly parallel, distributed processes

77



DEFINING A 1-HIDDEN LAYER
NEURAL NETWORK



Neural Networks

Chalkboard

— Example: Neural Network w/1 Hidden Layer



Decision

Functions Neural Network

Output Yy = U(ﬂlzl + ﬁzzQ)

Weights

Z9 = U(Oé21$1 + Q222 + 04235133)

Hidden Layer
z1 = o(@11T1 + a12%2 + a1323)

Weights
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Decision

Functions Neural Network

Output Yy = U(ﬂlzl + BQZQ)

Weights

Z9 = U(a21a?1 + Q222 + 04235133)

Hidden Layer
z1 = o(a1121 + Q122 + Q1373)

Weights

82



Decision

Functions Neural Network

Output Yy = U(ﬂlzl + BQZQ)

Weights

z9 = 0(Q2121 + a2T2 + 23T3)

Hidden Layer
z1 = o(@11T1 + a12%2 + a1323)

Weights

83



Decision

Functions Neural Network

Output Yy = a(ﬂlzl + ,3222)

Weights

Z9 = U(a21a?1 + Q222 + 04235133)

Hidden Layer
z1 = o(@11T1 + a12%2 + a1323)

Weights

84



Decision

Functions Neural Network

Output Yy = a(ﬂlzl + ,3222)

Weights

Z9 = U(a21a?1 + Q222 + 04235133)

Hidden Layer
z1 = o(@11T1 + a12%2 + a1323)

Weights

85



NONLINEAR DECISION BOUNDARIES
AND NEURAL NETWORKS



Decision

Functions Logistic Regression

y = he(x) = (0" x)

1
Output where o(a) = ——
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Decision

FUnctions Logistic Regression

y=hg(x) =0 0!

In-Class Example
Output -

X

89



Neural Networks

Chalkboard

— 1D Example from linear regression to logistic
regression

— 1D Example from logistic regression to a neural
network



Decision

Functions Logistic Regression

y = he(x) = (0" x)

1
Output where o(a) = ——




Decision

FUnctions Logistic Regression

y=hg(x) =0 0!

In-Class Example
Output A




Neural Network Parameters
Question: y

Suppose you are training a
one-hidden layer neural 2 oz
network with sigmoid

activations for binary (%)
classification.
20010086 Answer:

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.



