DEPARTMENT

10-301/601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

(Linear Models) + Feature Engineering + Regularization

Matt Gormley
Lecture 10
Sep. 30, 2022

Q\&A

Q: I think you graded seven different questions incorrectly. Should I put them all in on Gradescope regrade request and submit that?
A: Please, no. I'd encourage you to watch this tutorial video from Gradescope so you know how to use this important tool.
> https://help.gradescope.com/article/8hchzgh8wh-student-regrade-request

Reminders

- Practice Problems: Exam 1
- Exam 1
- Tue, Oct 4, 6:30pm - 8:30pm
- see Piazza for details
- Homework 4: Logistic Regression
- Out: Tue, Oct 4
- Due: Thu, Oct 13 at 11:59pm

Linear Models

PERCEPTRON, LINEAR REGRESSION, AND LOGISTIC REGRESSION

Why is it not "Logistic Classification"?

Whiteboard

- Conceptual Change: 2D classification in 3D
- Why is it called Logistic Regression and not Logistic Classification?

Matching Game

Question:

Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

$$
h_{\boldsymbol{\theta}}(\mathbf{x})=p(y \mid x)
$$

2. Least Mean Squares
$h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}$

3. Perceptron

$h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{sign}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)$
4. $\quad \theta_{k} \leftarrow \theta_{k}+\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)$
5.

$$
\theta_{k} \leftarrow \theta_{k}+\frac{1}{1+\exp \lambda\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right)}
$$

6.

$$
\theta_{k} \leftarrow \theta_{k}+\lambda\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)-y^{(i)}\right) x_{k}^{(i)}
$$

Answer:
A. $1=5,2=4,3=6$
B. $1=5,2=6,3=4$
C. $1=6,2=4,3=4$
D. $1=5,2=6,3=6$
E. $1=6,2=6,3=6$
F. $1=6,2=5,3=5$
G. $1=5,2=5,3=5$
H. $1=4,2=5,3=6$

SGD for Logistic Regression

Question:

Which of the following is a correct description of SGD for Logistic Regression?

Answer:

At each step (i.e. iteration) of SGD for Logistic Regression we...
A. (1) compute the gradient of the log-likelihood for all examples (2) update all the parameters using the gradient
B. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down, (3) report that answer
C. (1) compute the gradient of the log-likelihood for all examples (2) randomly pick an example (3) update only the parameters for that example
D. (1) randomly pick a parameter, (2) compute the partial derivative of the loglikelihood with respect to that parameter, (3) update that parameter for all examples
E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood for that example, (3) update all the parameters using that gradient
F. (1) randomly pick a parameter and an example, (2) compute the gradient of the log-likelihood for that example with respect to that parameter, (3) update that parameter using that gradient

Gradient Descent

Algorithm 1 Gradient Descent
1: procedure $\operatorname{GD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
2: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
3: while not converged do
4:
$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
5: return $\boldsymbol{\theta}$
In order to apply GD to Logistic Regression all we need is the gradient of the objective function (i.e. vector of partial derivatives).

$$
\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})=\left[\begin{array}{c}
\frac{d}{d \theta_{1}} J(\boldsymbol{\theta}) \\
\frac{d}{d \theta_{2}} J(\boldsymbol{\theta}) \\
:
\end{array}\right]
$$

Stochastic Gradient Descent (SGD) Reall..

Algorithm 1 Stochastic Gradient Descent (SGD)
1: procedure $\operatorname{SGD}\left(\mathcal{D}, \boldsymbol{\theta}^{(0)}\right)$
2: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}^{(0)}$
3: while not converged do
4: \quad for $i \in \operatorname{shuffle}(\{1,2, \ldots, N\})$ do
5: $\quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$

6: return θ
We can also apply SGD to solve the MCLE problem for Logistic Regression.
We need a per-example objective:

$$
\text { Let } J(\boldsymbol{\theta})=\sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})
$$

where $J^{(i)}(\boldsymbol{\theta})=-\log p_{\boldsymbol{\theta}}\left(y^{i} \mid \mathbf{x}^{i}\right)$.

Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one step (i.e. iteration) of SGD for Logistic Regression will result in a change to the parameters only if the current example is incorrectly classified.

Answer:

BAYES OPTIMAL CLASSIFIER

Bayes Optimal Classifier

Suppose you knew the distribution $p^{*}(y \mid x)$ or had a good approximation to it.

Question:

How would you design a
function $\mathrm{y}=\mathrm{h}(\mathbf{x})$ to predict a single label?

Answer:

$$
y^{(i)} \sim p^{*}\left(\cdot \mid \mathbf{x}^{(i)}\right)
$$

You'd use the Bayes optimal classifier!

Probabilistic Learning

Today, we assume that our output is sampled from a conditional probability distribution:

$$
\mathbf{x}^{(i)} \sim p^{*}(\cdot)
$$

Our goal is to learn a probability distribution $p(y \mid x)$ that best approximates $\mathrm{p}^{*}(\mathrm{y} \mid \mathbf{x})$

Bayes Optimal Classifier

Whiteboard

- Bayes Optimal Classifier
- Reducible / irreducible error
- Ex: Bayes Optimal Classifier for o/1 Loss

OPTIMIZATION METHOD \#4: MINI-BATCH SGD

Mini-Batch SGD

- Gradient Descent:

Compute true gradient exactly from all N examples

- Stochastic Gradient Descent (SGD): Approximate true gradient by the gradient of one randomly chosen example
- Mini-Batch SGD:

Approximate true gradient by the average gradient of K randomly chosen examples

Mini-Batch SGD

while not converged: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\gamma \mathbf{g}$

Three variants of first-order optimization:
Gradient Descent: $\mathbf{g}=\nabla J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} \nabla J^{(i)}(\boldsymbol{\theta})$

$$
\text { SGD: } \mathbf{g}=\nabla J^{(i)}(\boldsymbol{\theta}) \quad \text { where } i \text { sampled uniformly }
$$

Mini-batch SGD: $\mathbf{g}=\frac{1}{S} \sum_{s=1}^{S} \nabla J^{\left(i_{s}\right)}(\boldsymbol{\theta}) \quad$ where i_{s} sampled uniformly $\forall s$

Logistic Regression Objectives

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the log of the likelihood
- Implement logistic regression for binary or multiclass classification
- Prove that the decision boundary of binary logistic regression is linear
- For linear regression, show that the parameters which minimize squared error are equivalent to those that maximize conditional likelihood

FEATURE ENGINEERING

Handcrafted Features

Where do features come from?

Feature Engineering

hand-crafted features	First word before M1
	Second word before M1
	Bag-of-words in M1
	Head word of M1
Sun et al., 2011	First word after M2
	Second word after M2
	Bag-of-words in M2
	Head word of M2
	Bigrams in between
	Words on dependency path
	Country name list
	Personal relative triggers
	Personal title list
Zhou et al.,	WordNet Tags
2005	Heads of chunks in between
	Path of phrase labels
0	Combination of entity types

Feature Learning

Where do features come from?

Where do features come from?

$\left.\begin{array}{cc}\text { Zhou et al., } \\ 2005 & \text { word } \\ & \text { embeddings } \\ & \end{array}\right)$ Mikolov et al.,
2013

Feature Learning

Where do features come from?

Feature Learning

Where do features come from?

Feature Engineering

Feature Learning

Where do features come from?

Feature Learning

Feature Engineering for NLP

Suppose you build a logistic regression model to predict a part-of-speech (POS) tag for each word in a sentence.

What features should you use?

The movie I watched depicted hope

Feature Engineering for NLP

Per-word Features:

	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(2)}$	$\mathrm{x}^{(3)}$	$\mathrm{x}^{(4)}$	$\mathrm{x}^{(5)}$	$\mathrm{x}^{(6)}$
```is-capital(wi) endswith(wi,"e") endswith(wi,"d") endswith(wi,"ed") wi wi```	1	0	1	0	0	0
	1	1	0	0	0	1
	0	0	0	1	1	0
	0	0	0	1	1	0
	0	0	0	0	0	0
	0	0	0	0	0	1
	...	...	...	$\ldots$	...	...



## Feature Engineering for NLP

Context Features:

	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(2)}$	$\mathrm{x}^{(3)}$	$\mathrm{x}^{(4)}$	$\mathrm{x}^{(5)}$	$\mathrm{x}^{(6)}$
...	$\cdots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$	...
$\mathrm{w}_{\mathrm{i}}==$ "watched"	0	0	0	1	0	0
$\mathrm{w}_{\mathrm{i}+1}==$ "watched"	0	0	1	0	0	0
$\mathrm{w}_{\text {i-1 }}==$ "watched"	0	0	0	0	1	0
$\mathrm{w}_{\text {i+2 }}==$ "watched"	0	1	0	0	0	0
$\mathrm{w}_{\text {i-2 }}==$ "watched"	0	0	0	0	0	1
...	...	$\ldots$	...	...	...	...



## Feature Engineering for NLP

Context Features:

	$\mathrm{x}^{(1)}$	$\mathrm{x}^{(2)}$	$\mathrm{x}^{(3)}$	$\mathrm{x}^{(4)}$	$\mathrm{x}^{(5)}$	$\mathrm{x}^{(6)}$
...	$\ldots$	...	...	$\ldots$	$\ldots$	$\ldots$
$\mathrm{W}_{\mathrm{i}}==$ "I"	0	0	1	0	0	0
$\mathrm{W}_{\mathrm{i}+1}==$ "I"	0	1	0	0	0	0
$\mathrm{W}_{\mathrm{i}-1}==$ "I"	0	0	0	1	0	0
$\mathrm{w}_{\mathrm{i}+2}==$ "I"	1	0	0	0	0	0
$\mathrm{w}_{\mathrm{i}-2}==$ "I"	0	0	0	0	1	0
...	...	...	...	...	...	...



## Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the WSJ 19-21 development set.

Model	Feature Templates	$\#$   Feats	Sent.   Acc.	Token   Acc.	Unk.   Acc.
3GRAMMEMM	See text	248,798	$52.07 \%$	$96.92 \%$	$88.99 \%$
NAACL 2003	See text and [1]	460,552	$55.31 \%$	$97.15 \%$	$88.61 \%$
Replication	See text and [1]	460,551	$55.62 \%$	$97.18 \%$	$88.92 \%$
Replication	+rareFeatureThresh $=5$	482,364	$55.67 \%$	$97.19 \%$	$88.96 \%$
5W	$+\left\langle t_{0}, w_{-2}\right\rangle,\left\langle t_{0}, w_{2}\right\rangle$	730,178	$56.23 \%$	$97.20 \%$	$89.03 \%$
5WSHAPES	$+\left\langle t_{0}, s_{-1}\right\rangle,\left\langle t_{0}, s_{0}\right\rangle,\left\langle t_{0}, s_{+1}\right\rangle$	731,661	$56.52 \%$	$97.25 \%$	$89.81 \%$
5WSHAPESDS	+ distributional similarity	737,955	$56.79 \%$	$97.28 \%$	$90.46 \%$



The movie

noun depicted hope

## Feature Engineering for CV

Edge detection (Canny)


Corner Detection (Harris)


## Feature Engineering for CV

## Scale Invariant Feature Transform (SIFT)



Figure 3: Model images of planar objects are shown in the op row. Recognition results below show model outlines and mage kevs used for matching.


Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is down-sampled by a factor of 2 , and the process repeated.

## NON-LINEAR FEATURES

## Nonlinear Features

- aka. "nonlinear basis functions"
- So far, input was always $\mathbf{x}=\left[x_{1}, \ldots, x_{M}\right]$
- Key Idea: let input be some function of $\mathbf{x}$
- original input: $\mathbf{x} \in \mathbb{R}^{M}$
where $M^{\prime}>M$ (usually)
- new input: $\quad \mathbf{x}^{\prime} \in \mathbb{R}^{M^{\prime}}$
- define $\mathbf{x}^{\prime}=b(\mathbf{x})=\left[b_{1}(\mathbf{x}), b_{2}(\mathbf{x}), \ldots, b_{M^{\prime}}(\mathbf{x})\right]$

$$
\text { where } b_{i}: \mathbb{R}^{M} \rightarrow \mathbb{R} \text { is any function }
$$

- Examples: $(\mathrm{M}=1)$ polynomial

$$
b_{j}(x)=x^{j} \quad \forall j \in\{1, \ldots, J\}
$$

radial basis function

$$
b_{j}(x)=\exp \left(\frac{-\left(x-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right)
$$

sigmoid
$\log$

$$
b_{j}(x)=\frac{1}{1+\exp \left(-\omega_{j} x\right)}
$$

$$
b_{j}(x)=\log (x)
$$

## For a linear model:

 still a linear function of $b(x)$ even though a nonlinear function of $x$
## Examples:

Perceptron
Linear regression
Logistic regression

## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\boldsymbol{\top}} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

$i$	$y$	$x$
1	2.0	1.2
2	1.3	1.7
$\ldots$	$\cdots$	$\ldots$
10	1.1	1.9



## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

$i$	$y$	$x$
1	2.0	1.2
2	1.3	1.7
$\ldots$	$\ldots$	$\ldots$
10	1.1	1.9



## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

$i$	$y$	$x$	$x^{2}$
1	2.0	1.2	$(1.2)^{2}$
2	1.3	1.7	$(1.7)^{2}$
$\cdots$	$\cdots$	$\cdots$	$\cdots$
10	1.1	1.9	$(1.9)^{2}$



## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

Linear Regression (poly=3)

$i$	$y$	$x$	$x^{2}$	$x^{3}$
1	2.0	1.2	$(1.2)^{2}$	$(1.2)^{3}$
2	1.3	1.7	$(1.7)^{2}$	$(1.7)^{3}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$
10	1.1	1.9	$(1.9)^{2}(1.9)^{3}$	$y$

> true "unknown" target function is linear with negative slope and gaussian noise


## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

Linear Regression (poly=5)

$i$	$y$	$x$	$\ldots$	$x^{5}$
1	2.0	1.2	$\ldots$	$(1.2)^{5}$
2	1.3	1.7	$\ldots$	$(1.7)^{5}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\cdots$
10	1.1	1.9	$\ldots$	$(1.9)^{5}$

true "unknown" target function is linear with negative slope and gaussian noise


## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

Linear Regression (poly=8)

$i$	$y$	$x$	$\ldots$	$x^{8}$
1	2.0	1.2	$\ldots$	$(1.2)^{8}$
2	1.3	1.7	$\ldots$	$(1.7)^{8}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$
10	1.1	1.9	$\ldots$	$(1.9)^{8}$



## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

Linear Regression (poly=9)

$i$	$y$	$x$	$\ldots$	$x^{9}$
1	2.0	1.2	$\ldots$	$(1.2)^{9}$
2	1.3	1.7	$\ldots$	$(1.7)^{9}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\ldots$

true "unknown" target function is linear with negative slope and gaussian noise


## Over-fitting



Root-Mean-Square (RMS) Error: $\quad E_{\text {RMS }}=\sqrt{2 E\left(\mathbf{w}^{\star}\right) / N}$

## Polynomial Coefficients

	$M=0$	$M=1$	$M=3$	$M=9$
$\theta_{0}$	0.19	0.82	0.31	0.35
$\theta_{1}$		-1.27	7.99	232.37
$\theta_{2}$			-25.43	-5321.83
$\theta_{3}$			17.37	48568.31
$\theta_{4}$				-231639.30
$\theta_{5}$				640042.26
$\theta_{6}$				-1061800.52
$\theta_{7}$				1042400.18
$\theta_{8}$				-557682.99
$\theta_{9}$				125201.43

## Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

$\mathbf{i}$	y	x	$\ldots$	$\mathrm{x}^{9}$
1	2.0	1.2	$\ldots$	$(1.2)^{9}$
2	1.3	1.7	$\ldots$	$(1.7)^{9}$
$\ldots$	$\ldots$	$\ldots$	$\ldots$	$\cdots$
10	1.1	1.9	$\ldots$	$(1.9)^{9}$

Linear Regression (poly=9)


## Example: Linear Regression

- With just $\mathrm{N}=10$ points we overfit!
- But with $\mathrm{N}=100$ points, the overfitting (mostly) disappears
- Takeaway: more data helps prevent overfitting

REGULARIZATION

## Overfitting

Definition: The problem of overfitting is when the model captures the noise in the training data instead of the underlying structure

Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when $k$ is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)


## Motivation: Regularization

- Occam's Razor: prefer the simplest hypothesis
- What does it mean for a hypothesis (or model) to be simple?

1. small number of features (model selection)
2. small number of "important" features (shrinkage)

## Regularization

- Given objective function: $J(\theta)$
- Goal is to find: $\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})$
- Key idea: Define regularizer r( $\theta$ ) s.t. we tradeoff between fitting the data and keeping the model simple
- Choose form of $r(\theta)$ :
- Example: q-norm (usually p-norm): $\|\boldsymbol{\theta}\|_{q}=\left(\sum_{m=1}^{M}\left|\theta_{m}\right|^{q}\right)^{q}$

$q$	$r(\boldsymbol{\theta})$	yields parame-   ters that are...	name	optimization notes		
0	$\\|\boldsymbol{\theta}\\|_{0}=\sum \mathbb{1}\left(\theta_{m} \neq 0\right)$	zero values	Lo reg.	no good computa-   tional solutions		
1	$\\|\boldsymbol{\theta}\\|_{1}=\sum\left\|\theta_{m}\right\|$	zero values	L1 reg.	subdifferentiable   2		
$\left(\\|\boldsymbol{\theta}\\|_{2}\right)^{2}=\sum \theta_{m}^{2}$	small values	L2 reg.	differentiable			

