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Q&A

Q: | think you graded seven different questions incorrectly.
® Should | put them all in on Gradescope regrade request

and submit that?

A: Please, no. I’d encourage you to watch this tutorial video
from Gradescope so you know how to use this important

tool.


https://help.gradescope.com/article/8hchz9h8wh-student-regrade-request

Reminders

* Practice Problems: Exam 1
* Exam 1
— Tue, Oct 4, 6:30pm - 8:30pm
— see Piazza for details

* Homework 4: Logistic Regression
— Out: Tue, Oct 4
— Due: Thu, Oct 13 at 11:59pm




PERCEPTRON, LINEAR REGRESSION,
AND LOGISTIC REGRESSION



Why is it not “Logistic Classification™?

Whiteboard

— Conceptual Change: 2D classification in 3D

— Why is it called Logistic Regression and not
Logistic Classification?



oL Matching Game

Question:
Match the Algorithm to its Update Rule

1. SGD for Logistic Regression

AN Y Ok Ot (ho(x) — )
he(x) = p(ylz) = o (BT

2. Least Mean Squares 5. 1

he(x) = x $KVD g" O = Ot 1+ exp A(ho(x() — y(@))

(P W\

3. Perceptron

O < Ok + A(hg(xD) — y@)zl?

ho(x) = sign(0' x) = _.E_/l_r = —
\/2./ \XC‘C'V\\\D (’\'\(-
Answer: A.1=5,2=4, 3=6 S°/o @1:6, 2=6,3=6 T =toxic
B. 1=5, 2=6, 3=4 F. 1=6, 2=5, 3=5
C.1=6, 2=4, 3=4 G. 1=5, 2=5, 3=5

D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6



6, °GD for Logistic Regression

Question:
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...

A. (1) compute the gradient of the log-likelihood for all examples (2) update all
the parameters using the gradient
B. ask-Matt for adeseriptionefSGDforLogisticRegre
opOFE that ansWer oui ¢

C. (1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example

D. (1) randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all

on MtETCGewn,

or that example, (3) update all the parameters using that gradient

1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient

, examples
70/@ $1) randomly pick an example, (2) compute the gradient of the log-likelihood
Foo



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do
4 00— YVeoJ(0O)

5 return 0

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).




Stochastic Gradient Descent (Sm

Algorithm 1 Stochastic Gradient Descent (SG D)

i procedure SGD(D, 8'?)

2 0« W

3: while not converged do

4: fori € shuffle({1,2,...,N})do
5:

6

00 —1VeJ ()
return 0

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).



Logistic Regression vs. Perceptron

Q3
Question: A= e ‘3112" @

True or False: Just like Perceptron, one
step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the N

parameters only if the current example is u
incorrectly classified. + +

T 4
Answer: + 4 +




BAYES OPTIMAL CLASSIFIER



Bayes Optimal Classifier

Suppose you knew the

distribution p*(y | x) or had Probabilistic Learning
a good approximation to

r Today, we assume that our

it. :
output is sampled from a
: conditional probability y‘” 't
Question: distribution: ==T"ot"
How would you design a (2) * B
function y = h(x) to predict X' ~p ()

asingle label? € 70 = ; X ;
>y~ p*(-xV)

Answer:

You’d use the Bayes
optimal classifier!

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)




Bayes Optimal Classifier

Whiteboard
— Bayes Optimal Classifier
— Reducible / irreducible error
— Ex: Bayes Optimal Classifier for 0/1 Loss



OPTIMIZATION METHOD #4:
MINI-BATCH SGD



Mini-Batch SGD

* Gradient Descent:
Compute true gradient exactly from all N
examples

 Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient
of one randomly chosen example

* Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples



Mini-Batch SGD

while not converged: 0 <— 0 — g

Three variants of first- order optimization:

Gradient Descent: g = V.J(0 Z vJ@ (g
SGD: g = VJ¥(0) where ¢ sampled uniformly

S
1 .
Mini-batch SGD: g = 5 E v Jlis) (0) where i, sampled uniformly Vs



Logistic Regression Objectives

You should be able to...

* Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

* Given a discriminative probabilistic model, derive the conditional
log-likelihood, its gradient, and the corresponding Bayes
Classifier

* Explain the practical reasons why we work with the log of the
likelihood

* Implement logistic regression for binary
classification

* Prove that the decision boundary of binary logistic regression is
linear



FEATURE ENGINEERING



Handcrafted Features

p(y|x) o
exp(O,*f




Feature Engineering

Where do features come from?

A

hand-crafted
features

Sun et al., 2011

O

3

O

Zhou et al,,
2005

O

First word before M1
Second word before M1
Bag-of-words in M1

Head word of M1

Other word in between
First word after M2
Second word after M2
Bag-of-words in M2

Head word of M2

Bigrams in between

Words on dependency path
Country name list
Personal relative triggers
Personal title list

WordNet Tags

Heads of chunks in between
Path of phrase labels
Combination of entity types

Feature Learning
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Feature Engineering

Where do features come from?

A

hand-crafted
features

O

Sun et al., 2011

O

3

O

Look-up table Classifier
(contl:xl?cL\::ords) embedding > missing word
unsupervised
learning
similar words, cat: | o.11 | .23 .45
similar embeddings
dog:| 013 | .26 -.52

CBOW model in Mikolov et al. (2013)

Zhou et al,,
2005 Word /
@) embeddings
O Mikolov et al.,
2013

Feature Learning



Feature Engineering

Where do features come from?

0 pooling b—— /I;I\
Ve ~
] —( — — i — —
| RS 6N 1N
| | — ) — s s i —
The [movie] showed [wars] The [movie] showed [wars]
Convolutional Neural Networks Recursive Auto Encoder
(Collobert and Weston 2008) (Socher 2011)
CNN RAE
A 4
Zhou et al,, .
2005 word strmg
) embeddings
O embeddings _____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008

Feature Learning



Feature Engineering

Where do features come from?

A

WDT,NN /7 N\
/ \

r ot 1t

The [movie] showed [wars]

2005 word
@) embeddings ____,
O Mikolov et al.,
2013

/
/

tree
O embeddings
Socher et al
O 2013
A Hermann & Blunsom,
/ 2013

string

embeddings
Socher, 2011

O Collobert & Weston,

2008

Feature Learning
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Feature Engineering

Where do features come from?

A '?e’}be
: Sep,, 703, Sy,
word embedding ’773,7 Wy, “eq,,.
e, S,
hand-crafted features \/SJ’/) "Vl%
features A~ ----- >O {'3(“(-
3 Turian et al. O ,C,bf
O O 2010 Hermann et al. =
Sun et al., 2011 Koo et8al. 2014
O ,'9‘200 tree
i O embeddings
! Socher et al.,
8 i O s
i - rermann & Blunsom,
: / 2013
O : /
I U
Zhou et al., i M tri
2005 ! word ,'I S rlng
) i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning
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Feature Engineering

Where do features come from?

A

word embedding best of both
hand-crafted features 5
worlds®

features o~ ----- > O_ -
3 Turian et aIOO => O
O O 2019 Hermann et al. A

Sun et al., 2011 Koo et al. 2014

O ?2008 tree
i O embeddings
! Socher et al
8 i O o
i A Hermann & Blunsom,
| / 2013
O ! /
: /
Zhou et al., i M tri
2005 ' word / StTg
i~ embeddings
O embeddings ____ > Socher, 2011
O Mikolov et al., O Collobert & Weston,
2013 2008 >

Feature Learning

42



Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

[deter.} [ noun ] [ noun } verb

The movie | watched depicted hope




Feature Engineering for NLP

Per-word Features:

x() x) x3) x(4) x(5) x(6)
is-capital(w;) 1 1
endswith(w;, “e") 1 1 1
endswith(w;,“d"”) 1 1
endswith(w;,“ed”) 1 1
w; == *“aardvark”
w; == “hope” 1

[deter.} [ noun } [ noun 1 verb

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x() x) x3) x(4) x(5) x(6)
w; == “watched” 1
Wi, == “watched” 1
w;_; == *“watched” 1
Wi, == “watched” 1
w;_, == “watched” 1

[deter.} [ noun } [ noun 1 verb

The movie | watched depicted hope




Feature Engineering for NLP

Context Features:

x(1) x() x(3) x(4) x(5) x(6)
wy == “I” 1
Wiy == 47 1
Wiy == “I” 1
Wiy == “I7 1
Wi, == “I" 1

[deter.} [ noun } [ noun 1 verb

The movie | watched depicted hope




Table frorr\l\’/\anning (2011) ,

Feature Engineering for NLP

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

[, | ~—— o —
Model Feature Templates F Sent. Unk.
‘ \ L_F&t Acc. Acc.
| 3GRAMMEMM  See text ) 248,798 52.07 88.99%
- NAACL 2003  See text and [1] | 460,552 55.31% 88.61%
Replication  See text and [1] 460,551 55.62% 88.92%
Replication’  +rareFeatureThresh = 5 482,364 55.67% 88.96%
5W +(to, w—2), (to, w2) 730,178 56.23% 89.03%
SWSHAPES -i-(to, S_1>, <t0, So), (to, 8+1> 731,661 56.52% 89.81%
5WSHAPESDS + distributional similarity |737,955 56.79% 90.46%

— —

[deter.} [ noun J [ noun J verb

The movie | watched depicted hope
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Feature Engineering for CV

Edge detection (Canny)

Original Image

Corner Detection (Harris)

Figures from http://opencv.org

52



Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

Figure 3: Model images of planar objects are shown in the
oprow. Recognition results below show model outlines and
mage keys used for matching.

Figure from Lowe (1999) and Lowe (2004)

%
f

Scale /‘)@ >

(next

octave) /{_}j@ ﬁ
= i

Scale >@>—>
(first
octave) >C—> >

Difference of

Gaussian Gaussian (DOG)

Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to
produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
down-sampled by a factor of 2, and the process repeated.
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NON-LINEAR FEATURES



Nonlinear Features

aka. “nonlinear basis functions’”’

So far, input was always X = [Z1, ..., Zp|

Key Idea: let input be some function of x

. . . M
— original input: X € R ~ where M’ > M (usually)
x' ¢ RM

— new input:

— define X' = b(x) = [b1(x), b2(x), - . ., bar (%]
where b; : RM — R is any function

Examples: (M = 1)
polynomial

radial basis function
sigmoid

log

bj(x) = o’

—(z — py)?

bj (ZE) = eXp ( 20_2

Vied{l,...,J}

)

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
X

Examples:

Perceptron

Linear regression
Logistic regression



Example:

[~ —\
Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function

INEAES

1 2.0 1.2

2 1.3 17

10 1.1 1.9

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

2.5 -

2.0 -

1.5 -

1.0 -

0.5 -

0.0 -

-0.5 +

1.0

1.5

2.0

Linear Regression

2.5

3.0
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Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function - Linear Regression (poly=1)

2.0 -
INEAES

1 2.0 1.2
1.5 -

2 1.3 17

10 1.1 1.9

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function - Linear Regression (poly=2)

-.nﬂ 2.0 7

1.2 (1.2)?
1.5 -
2 1.3 1.7 (1.7)

10 11 1.9 (1.9)7

0.5 -

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

0.0 -




Example:

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

1.2 (1.2)> (1.2)3

2 13 17 (172 (1.7)
10 11 1.9 (1.9)(1.9)3

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Linear Regression

Linear Regression (poly=3)

15 2.0 2.5

60



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function ~ Linear Regression (poly=5)

IEIENEIES
1 20 12 .. (126

2 1.3 1.7 ... (7P
10 11 19 .. (1.9p

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

61



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 -
HHENE
1 20 12 .. (1.2)8 s
2 13 17 ... (1.7)8
y 1o0-

10 11 1.9 .. (1.9)p®

0.5 -
true “unknown’”’
target function is 0.0 -
linear with
negative slope

~0.5 -

and gaussian
noise

1.5

Linear Regression (poly=8)

2.0

2.5

3.0

62



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial

basis function | Linear Regression (poly=9)
2.0 - !
DS
1 20 12 .. (1.2) s
2 1.3 17 ... (17)p
y 1.0
10 11 1.9 .. (1.9)°
0.5 -
true “unknown”
target function is 0.0 -
linear with
negative slope
. ~0.5 -
and gaussian

0 1.5 2.0 2.5
noise




Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error:  Erus = V2E(w*)/N

Slide courtesy of William Cohen



Polynomial Coefficients

) J J l
M=0 (M=1] M =3 M=9
9o 0.19 |- 0.82 0.31 X 0.35
0, / -1.27 7.99 x' 232.37

0y y 7‘ -25.43|x"  -5321.83
0 _\*‘“‘(’4’ i‘ 17.37!*’ 48568.31
0, | o -231639.30
05 640042.26
O | F1061800.52l
0, |7 [ 1042400.18
05 -557682.99

Slide courtesy of William Cohen

125201.43



Example: Linear Regression

Goal: Learny=w'f(x) +b
where f(.) is a polynomial
basis function

2.0 - |
e
1 20 12 .. (1.2)° 15
2 1.3 17 ... (17)p
y 10-
10 11 19 .. (1.9)
0.5 -
0.0 -
~0.5 -

1.5

Linear Regression (poly=9)

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3‘.0
66



Goal: Learny=w'f(x) +b
where f(.) is a polynomial

Example: Linear Regression

basis function

e
1 20 12 .. (1.2)°
. (1.7)9
. (2.7 y

. (1.9)

29

100

1.3
0.1

1.1

0.9

1.7

2.7

1.9

1.5

. (15)

2.5 -

2.0 -

1.5 -

0.5 -

0.0 -

-0.5 -

1.0

Linear Regression (poly=9)

1.5

2.0

2.5

With just N =10
points we overfit!
But with N =100
points, the
overfitting
(mostly)
disappears
Takeaway: more
data helps
prevent
overfitting

3.0
67



REGULARIZATION



Overfitting

Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
— Decision Trees (e.g. when tree is too deep)
— KNN (e.g. when k is small)
— Perceptron (e.g. when sample isn’t representative)
— Linear Regression (e.g. with nonlinear features)
— Logistic Regression (e.g. with many rare features)



Motivation: Regularization

* Occam’s Razor: prefer the simplest
hypothesis

* What does it mean for a hypothesis (or
model) to be simple?

1. small number of features (model selection)

2. small number of “important” features

(shrinkage) y
A7\ | x=) s - = Bux.
O jelg 1::00000\ —2'.& s W=

S, _
o 4 / L9
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Regularization (4

us (o)-luﬂulnv g\w(h\
Given objective function: J(e)/ / ey
Goalis to find: 9 = argmm J(0)+ \r(6 "
TR

Key idea: Define regularizer r(0) s.t. we tradeoff
between fitting the data and keeping the model
simple

Choose form of r(0):

Mo N\a
\V(e—\ Example: g-norm (usually p-norm): ||8]|, = (Z |9m|q>
m=1

q 7(0) yields parame- name optimization notes
ters that are

tional solutions

m\z ooe
T ’ “ 0 18lo = > 1(0,, #0) zero values Loreg. no good computa-

L ||0]]1 =D |0m] zero values Lireg. subdifferentiable
2 (||0]]2)% = > 02, small values L2reg. differentiable
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