Hidden Markov Models

+

Exam 2 Review

Matt Gormley & Henry Chai
Lecture 18
Oct. 27, 2021
Reminders

• Lecture on Friday!
• Homework 6: Learning Theory / Generative Models
 – Out: Thu, Oct. 21
 – Due: Thu, Oct. 28 at 11:59pm
 – Same collaboration policy as Homework 3
 • Opt-in to homework groups on Piazza
 – IMPORTANT: you may only use 2 grace days on Homework 6
 • Last possible moment to submit HW6: Sat, Oct. 30 at 11:59pm

• Midterm Exam 2
 – Tue, Nov. 2, 6:30pm – 8:30pm

• Practice for Exam 2
 – Practice problems released on course website
 • (Tentatively) Out: Thu, Oct. 21
 – Mock Exam 2
 • (Tentatively) Out: Thu, Oct. 28
 • Due Sun, Oct. 31 at 11:59pm
MIDTERM EXAM LOGISTICS
Midterm Exam

• **Time / Location**
 – **Time:** Tue, Nov. 2, 6:30pm – 8:30pm
 – **Location & Seats:** You have all been split across multiple rooms. Everyone has an assigned seat in one of these rooms. Please watch Piazza carefully for announcements.

• **Logistics**
 – Covered material: Lecture 9 – Lecture 17
 – Format of questions:
 • Multiple choice
 • True / False (with justification)
 • Derivations
 • Short answers
 • Interpreting figures
 • Implementing algorithms on paper
 – No electronic devices
 – You are allowed to **bring** one 8½ x 11 sheet of notes (front and back)
Midterm Exam

• How to Prepare
 – Attend the midterm review lecture (right now!)
 – Review prior year’s exam and solutions (we’ll post them)
 – Review this year’s homework problems
 – Consider whether you have achieved the “learning objectives” for each lecture / section
 – Crowdsources exam questions
Midterm Exam

• Advice (for during the exam)
 – Solve the easy problems first (e.g. multiple choice before derivations)
 • if a problem seems extremely complicated you’re likely missing something
 – Don’t leave any answer blank!
 – If you make an assumption, write it down
 – If you look at a question and don’t know the answer:
 • we probably haven’t told you the answer
 • but we’ve told you enough to work it out
 • imagine arguing for some answer and see if you like it
Topics for Midterm 1

• Foundations
 – Probability, Linear Algebra, Geometry, Calculus
 – Optimization

• Important Concepts
 – Overfitting
 – Experimental Design

• Classification
 – Decision Tree
 – KNN
 – Perceptron

• Regression
 – Linear Regression
Topics for Midterm 2

• Classification
 – Binary Logistic Regression

• Important Concepts
 – Stochastic Gradient Descent
 – Regularization
 – Feature Engineering

• Feature Learning
 – Neural Networks
 – Basic NN Architectures
 – Backpropagation

• Learning Theory
 – PAC Learning

• Generative Models
 – Generative vs. Discriminative
 – MLE / MAP
 – Naïve Bayes
SAMPLE QUESTIONS
Sample Questions

3.2 Logistic regression

Given a training set \(\{(x_i, y_i), i = 1, \ldots, n\} \) where \(x_i \in \mathbb{R}^d \) is a feature vector and \(y_i \in \{0, 1\} \) is a binary label, we want to find the parameters \(\hat{w} \) that maximize the likelihood for the training set, assuming a parametric model of the form

\[
p(y = 1|x; w) = \frac{1}{1 + \exp(-w^T x)}.
\]

The conditional log likelihood of the training set is

\[
\ell(w) = \sum_{i=1}^{n} y_i \log p(y_i | x_i; w) + (1 - y_i) \log(1 - p(y_i | x_i; w)),
\]

and the gradient is

\[
\nabla \ell(w) = \sum_{i=1}^{n} (y_i - p(y_i | x_i; w))x_i.
\]

(b) [5 pts.] What is the form of the classifier output by logistic regression?

\[
h(\hat{x}) = \arg\max_{y} p(y|\hat{x}) = \begin{cases} 1 & \text{if } p(y|\hat{x}) > 0.5 \\ 0 & \text{otherwise} \end{cases}
\]

(c) [2 pts.] Extra Credit: Consider the case with binary features, i.e., \(x \in \{0, 1\}^d \subset \mathbb{R}^d \), where feature \(x_1 \) is rare and happens to appear in the training set with only label 1. What is \(\hat{w}_1 \)? Is the gradient ever zero for any finite \(w \)? Why is it important to include a regularization term to control the norm of \(\hat{w} \)?
Q1

2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier trained till convergence on some training data D_{train}, and tested on a separate test set D_{test}. You look at the test error, and find that it is very high. You then compute the training error and find that it is close to 0.

1. [4 pts] Which of the following is expected to help? Select all that apply.

 ✓ (a) Increase the training data size.
 ✓ (b) Decrease the training data size.
 (c) Increase model complexity (For example, if your classifier is an SVM, use a more complex kernel. Or if it is a decision tree, increase the depth).
 ✓ (d) Decrease model complexity.
 (e) Train on a combination of D_{train} and D_{test} and test on D_{test}
 (f) Conclude that Machine Learning does not work.
2.1 Train and test errors

In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier trained till convergence on some training data D_{train}, and tested on a separate test set D_{test}. You look at the test error, and find that it is very high. You then compute the training error and find that it is close to 0.

4. [1 pts] Say you plot the train and test errors as a function of the model complexity. Which of the following two plots is your plot expected to look like?
Sample Questions

5 Learning Theory [20 pts.]

(a) [3 pts.] T or F: It is possible to label 4 points in \(\mathbb{R}^2 \) in all possible \(2^4 \) ways via linear separators in \(\mathbb{R}^2 \).

(d) [3 pts.] T or F: The VC dimension of a concept class with infinite size is also infinite.

(f) [3 pts.] T or F: Given a realizable concept class and a set of training instances, a consistent learner will output a concept that achieves 0 error on the training instances.
Can the neural network in Figure (b) correctly classify the dataset given in Figure (a)?
Sample Questions

Neural Networks

Apply the backpropagation algorithm to obtain the partial derivative of the mean-squared error of y with the true value y^* with respect to the weight w_{22} assuming a sigmoid nonlinear activation function for the hidden layer.
1.2 Maximum Likelihood Estimation (MLE)

Assume we have a random sample that is Bernoulli distributed $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$. We are going to derive the MLE for θ. Recall that a Bernoulli random variable X takes values in $\{0, 1\}$ and has probability mass function given by

$$P(X; \theta) = \theta^X (1 - \theta)^{1-X}.$$

(a) [2 pts.] Derive the likelihood, $L(\theta; X_1, \ldots, X_n)$.

(b) [2 pts.] Derive the following formula for the log likelihood:

$$\ell(\theta; X_1, \ldots, X_n) = \sum_{i=1}^{n} X_i \log(\theta) + \sum_{i=1}^{n} X_i \log(1 - \theta).$$

(c) Extra Credit: [2 pts.] Derive the following formula for the MLE: $\hat{\theta} = \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right)$.
Sample Questions

1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: In the limit, as \(n \) (the number of samples) increases, the MAP and MLE estimates become the same.
1.1 Naive Bayes

You are given a data set of 10,000 students with their sex, height, and hair color. You are trying to build a classifier to predict the sex of a student, so you randomly split the data into a training set and a testing set. Here are the specifications of the data set:

- sex ∈ \{male,female\}
- height ∈ [0,300] centimeters
- hair ∈ \{brown, black, blond, red, green\}
- 3240 men in the data set
- 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you might naturally or intuitively make about the dataset) answer each question with T or F and provide a one sentence explanation of your answer:

(a) [2 pts.] T or F: As height is a continuous valued variable, Naive Bayes is not appropriate since it cannot handle continuous valued variables.

(c) [2 pts.] T or F: \(P(\text{height}|\text{sex},\text{hair}) = P(\text{height}|\text{sex}) \).
Naïve Bayes vs. Logistic Regression

Question:
You just started working at a new company that manufactures comically large pennies. Your manager asks you to build a binary classifier that takes an image of a penny (on the factory assembly line) and predicts whether or not it has a defect.

What follow-up questions would you pose to your manager in order to decide between using a Naïve Bayes classifier and a Logistic Regression classifier?
Question 4

Join by Web

1. Go to PollEv.com
2. Enter 10301601POLL
3. Respond to activity

Instructions not active. Log in to activate
MOTIVATION: STRUCTURED PREDICTION
Structured Prediction

• Most of the models we’ve seen so far were for **classification**
 – Given observations: \(x = (x_1, x_2, ..., x_K)\)
 – Predict a (binary) **label:** \(y\)

• Many real-world problems require **structured prediction**
 – Given observations: \(x = (x_1, x_2, ..., x_K)\)
 – Predict a **structure:** \(y = (y_1, y_2, ..., y_J)\)

• Some **classification** problems benefit from **latent structure**
Structured Prediction Examples

• **Examples of structured prediction**
 – Part-of-speech (POS) tagging
 – Handwriting recognition
 – Speech recognition
 – Word alignment
 – Congressional voting

• **Examples of latent structure**
 – Object recognition
Dataset for Supervised Part-of-Speech (POS) Tagging

Data: \[D = \{ x^{(n)}, y^{(n)} \}_{n=1}^{N} \]

<table>
<thead>
<tr>
<th>Sample 1:</th>
<th>Sample 2:</th>
<th>Sample 3:</th>
<th>Sample 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>n</td>
<td>n</td>
<td>p</td>
</tr>
<tr>
<td>time</td>
<td>flies</td>
<td>like</td>
<td>d</td>
</tr>
<tr>
<td>v</td>
<td>n</td>
<td>an</td>
<td>n</td>
</tr>
<tr>
<td>p</td>
<td>d</td>
<td>arrow</td>
<td>n</td>
</tr>
<tr>
<td>y^{(1)}</td>
<td>x^{(1)}</td>
<td>y^{(2)}</td>
<td>x^{(2)}</td>
</tr>
<tr>
<td>y^{(3)}</td>
<td>x^{(3)}</td>
<td>y^{(4)}</td>
<td>x^{(4)}</td>
</tr>
<tr>
<td>y^{(1)}</td>
<td>x^{(1)}</td>
<td>y^{(2)}</td>
<td>x^{(2)}</td>
</tr>
<tr>
<td>y^{(3)}</td>
<td>x^{(3)}</td>
<td>y^{(4)}</td>
<td>x^{(4)}</td>
</tr>
</tbody>
</table>
Dataset for Supervised Handwriting Recognition

Data: \[\mathcal{D} = \{ \mathbf{x}^{(n)}, \mathbf{y}^{(n)} \}_{n=1}^{N} \]

Sample 1:

Sample 2:

Sample 2:

Figures from (Chatzis & Demiris, 2013)

As we observe, the proposed approach offers a significant improvement over first-order linear-chain CRFs, as well as the rest of the considered alternatives. Therefore, we once again notice the practical significance of coming up with computationally efficient ways of relaxing the Markovian assumption in linear-chain CRF models applied to sequential data modeling. Note also that, in this experiment, the moderate order CRF models of [41] seem to yield a rather competitive result. This was expectable since the average modeled sequence in this experiment is less than 10 time points long. Finally, regarding the HMM method, with the number of mixture components selected so as to optimize model performance, we observe that the HMM yields a clear improvement, irrespective of the part of speech; there are a total of 43 different part-of-speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.
3. Character presence features.
4. Character co-occurrence features.

Finally, here we consider an experiment with the Penn Treebank corpus [25], containing 74,029 sentences with a total of 1,637,267 words. It is comprised of 49,115 unique words. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.
3. Character presence features.
4. Character co-occurrence features.

The obtained results are depicted in Table 4; we provide means, standard deviations, and the p-metric value of the Student's-t test run on the pairs of performances of the models (CRF, HMM, etc.).
Dataset for Supervised Phoneme (Speech) Recognition

Data: \[\mathcal{D} = \{ \mathbf{x}^{(n)}, \mathbf{y}^{(n)} \}_{n=1}^{N} \]

Sample 1:
- h#
- dh
- ih
- s
- w
- uh
- z
- iy
- z
- iy

Sample 2:
- f
- ao
- r
- ah
- s
- s
- h#

Figures from (Jansen & Niyogi, 2013)
Word Alignment / Phrase Extraction

- **Variables (boolean):**
 - For each (Chinese phrase, English phrase) pair, are they linked?

- **Interactions:**
 - Word fertilities
 - Few “jumps” (discontinuities)
 - Syntactic reorderings
 - “ITG contraint” on alignment
 - Phrases are disjoint (?)

(Burkett & Klein, 2012)
Congressional Voting

Application:

- Variables:
 - Representative’s vote
 - Text of all speeches of a representative
 - Local contexts of references between two representatives

- Interactions:
 - Words used by representative and their vote
 - Pairs of representatives and their local context

(Stoyanov & Eisner, 2012)
Structured Prediction Examples

• **Examples of structured prediction**
 – Part-of-speech (POS) tagging
 – Handwriting recognition
 – Speech recognition
 – Word alignment
 – Congressional voting

• **Examples of latent structure**
 – Object recognition
Case Study: Object Recognition

Data consists of images x and labels y.

- Pigeon: $x^{(1)}$ and $y^{(1)}$
- Rhinoceros: $x^{(2)}$ and $y^{(2)}$
- Leopard: $x^{(3)}$ and $y^{(3)}$
- Llama: $x^{(4)}$ and $y^{(4)}$
Case Study: Object Recognition

Data consists of images x and labels y.

- Preprocess data into “patches”
- Posit a latent labeling z describing the object’s parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time
Case Study: Object Recognition

Data consists of images \(x \) and labels \(y \).

- Preprocess data into “patches”
- Posit a latent labeling \(z \) describing the object’s parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- \(z \) is not observed at train or test time

![Diagram of object recognition model](image)
Case Study: Object Recognition

Data consists of images x and labels y.

- Preprocess data into “patches”
- Posit a latent labeling z describing the object’s parts (e.g. head, leg, tail, torso, grass)
- Define graphical model with these latent variables in mind
- z is not observed at train or test time
Structured Prediction

Preview of challenges to come...

• Consider the task of finding the most probable assignment to the output.

 \[\hat{y} = \arg\max_y p(y|x) \]

 where \(y \in \{+1, -1\} \)

 for \(y \in \mathcal{Y} \):

 \[p(y|x) \]

 Structured Prediction

 \[\hat{y} = \arg\max_{y \in \mathcal{Y}} p(y|x) \]

 where \(y \in \mathcal{Y} \)

 and \(|\mathcal{Y}| \) is very large
Machine Learning

The **data** inspires the structures we want to predict.

Our **model** defines a score for each structure.

It also tells us what to optimize.

Inference finds \{best structure, marginals, partition function\} for a new observation.

Learning tunes the parameters of the model.

(Inference is usually called as a subroutine in learning)
Machine Learning

Data

Inference

Model

Objective

Learning

(Inference is usually called as a subroutine in learning)
BACKGROUND
Background: Chain Rule of Probability

For random variables A and B:

$$P(A, B) = P(A|B)P(B)$$

For random variables X_1, X_2, X_3, X_4:

$$P(X_1, X_2, X_3, X_4) = P(X_1|X_2, X_3, X_4) \cdot P(X_2|X_3, X_4) \cdot P(X_3|X_4) \cdot P(X_4)$$
Background: Conditional Independence

Random variables A and B are conditionally independent given C if:

$$P(A, B|C) = P(A|C)P(B|C)$$ \hspace{1cm} (1)

or equivalently:

$$P(A|B, C) = P(A|C)$$ \hspace{1cm} (2)

We write this as:

$$A \perp\!
\!
\!\perp B|C$$

Later we will also write: $I_{A, \{C\}, B}$
HIDDEN MARKOV MODEL (HMM)
From Mixture Model to HMM

"Naïve Bayes":

\[P(X, Y) = \prod_{t=1}^{T} P(X_t|Y_t)p(Y_t) \]

HMM:

\[P(X, Y) = P(Y_1) \left(\prod_{t=1}^{T} P(X_t|Y_t) \right) \left(\prod_{t=2}^{T} p(Y_t|Y_{t-1}) \right) \]
HIDDEN MARKOV MODEL (HMM)
HMM Outline

- **Motivation**
 - Time Series Data

- **Hidden Markov Model (HMM)**
 - Example: Squirrel Hill Tunnel Closures
 [courtesy of Roni Rosenfeld]
 - Background: Markov Models
 - From Mixture Model to HMM
 - History of HMMs
 - Higher-order HMMs

- **Training HMMs**
 - (Supervised) Likelihood for HMM
 - Maximum Likelihood Estimation (MLE) for HMM
 - EM for HMM (aka. Baum-Welch algorithm)

- **Forward-Backward Algorithm**
 - Three Inference Problems for HMM
 - Great Ideas in ML: Message Passing
 - Example: Forward-Backward on 3-word Sentence
 - Derivation of Forward Algorithm
 - Forward-Backward Algorithm
 - Viterbi algorithm
Markov Models

Whiteboard

– Example: Tunnel Closures

[courtesy of Roni Rosenfeld]

– First-order Markov assumption

– Conditional independence assumptions
We could treat each (tunnel state, travel time) pair as independent. This corresponds to a Naïve Bayes model with a single feature (travel time).

\[
p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (.8 \times .2 \times .1 \times .03 \times \ldots)
\]
A Hidden Markov Model (HMM) provides a joint distribution over the tunnel states / travel times with an assumption of dependence between adjacent tunnel states.

\[p(O, S, S, O, C, 2m, 3m, 18m, 9m, 27m) = (0.8 \times 0.08 \times 0.2 \times 0.7 \times 0.03 \times \ldots) \]
From Mixture Model to HMM

“Naïve Bayes”: \[P(\mathbf{X}, \mathbf{Y}) = \prod_{t=1}^{T} P(X_t|Y_t)p(Y_t) \]

HMM: \[P(\mathbf{X}, \mathbf{Y}) = P(Y_1) \left(\prod_{t=1}^{T} P(X_t|Y_t) \right) \left(\prod_{t=2}^{T} p(Y_t|Y_{t-1}) \right) \]
From Mixture Model to HMM

“Naïve Bayes”:

\[P(X, Y) = \prod_{t=1}^{T} P(X_t|Y_t)p(Y_t) \]

HMM:

\[P(X, Y|Y_0) = \prod_{t=1}^{T} P(X_t|Y_t)p(Y_t|Y_{t-1}) \]
SUPERVISED LEARNING FOR HMMS
Recipe for Closed-form MLE

1. Assume data was generated i.i.d. from some model (i.e. write the generative story)
 \[x^{(i)} \sim p(x|\theta) \]

2. Write log-likelihood
 \[\ell(\theta) = \log p(x^{(1)}|\theta) + \ldots + \log p(x^{(N)}|\theta) \]

3. Compute partial derivatives (i.e. gradient)
 \[\frac{\partial \ell(\theta)}{\partial \theta_1} = \ldots \]
 \[\frac{\partial \ell(\theta)}{\partial \theta_2} = \ldots \]
 \[\ldots \]
 \[\frac{\partial \ell(\theta)}{\partial \theta_M} = \ldots \]

4. Set derivatives to zero and solve for \(\theta \)
 \[\frac{\partial \ell(\theta)}{\partial \theta_m} = 0 \text{ for all } m \in \{1, \ldots, M\} \]
 \[\theta_{MLE} = \text{solution to system of } M \text{ equations and } M \text{ variables} \]

5. Compute the second derivative and check that \(\ell(\theta) \) is concave down at \(\theta_{MLE} \)
MLE of Categorical Distribution

1. Suppose we have a dataset obtained by repeatedly rolling a M-sided (weighted) die N times. That is, we have data

$$\mathcal{D} = \{x^{(i)}\}_{i=1}^N$$

where $x^{(i)} \in \{1, \ldots, M\}$ and $x^{(i)} \sim \text{Categorical}(\phi)$.

2. A random variable is Categorical written $X \sim \text{Categorical}(\phi)$ iff

$$P(X = x) = p(x; \phi) = \phi_x$$

where $x \in \{1, \ldots, M\}$ and $\sum_{m=1}^{M} \phi_m = 1$. The log-likelihood of the data becomes:

$$\ell(\phi) = \sum_{i=1}^{N} \log \phi_{x^{(i)}} \text{ s.t. } \sum_{m=1}^{M} \phi_m = 1$$

3. Solving this constrained optimization problem yields the maximum likelihood estimator (MLE):

$$\phi_m^{MLE} = \frac{N_{x=m}}{N} = \frac{\sum_{i=1}^{N} \mathbb{I}(x^{(i)} = m)}{N}$$
Hidden Markov Model

HMM Parameters:

Emission matrix, A, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$

Transition matrix, B, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

Initial probs, C, where $P(Y_1 = k) = C_k, \forall k$
Training HMMs

Whiteboard

- (Supervised) Likelihood for an HMM
- Maximum Likelihood Estimation (MLE) for HMM
Learning an HMM decomposes into solving two (independent) Mixture Models.

Supervised Learning for HMMs

$$\text{Data} : \quad \mathbf{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N} \quad \hat{x} = [x_1, \ldots, x_T]^T \quad \hat{y} = [y_1, \ldots, y_T]^T$$

$$\text{Likelihood} :$$

$$\lambda(A, B, C) = \sum_{i=1}^{N} \log p(x^{(i)}, y^{(i)} | A, B, C)$$

$$= \sum_{i=1}^{N} \left[\log p(y^{(i)} | C) + \left(\sum_{t=1}^{T} \log p(y^{(i)}_t | y^{(i)}_{t-1}, B) \right) \right] + \left(\sum_{t=1}^{T} \log p(x^{(i)}_t | y^{(i)}_t, A) \right)$$

MLE:

$$\hat{A}, \hat{B}, \hat{C} = \arg \max_{A, B, C} \lambda(A, B, C)$$

$$\Rightarrow \hat{C} = \arg \max_{C} \sum_{i=1}^{N} \log p(y^{(i)} | C)$$

$$\hat{B} = \arg \max_{B} \sum_{i=1}^{N} \sum_{t=2}^{T} \log p(y^{(i)}_t | y^{(i)}_{t-1}, B)$$

$$\hat{A} = \arg \max_{A} \sum_{i=1}^{N} \sum_{t=1}^{T} \log p(x^{(i)}_t | y^{(i)}_t, A)$$

$$\hat{C}_k = \frac{\# (y^{(i)} = k)}{N} \quad \forall i, k$$

$$\hat{B}_{jk} = \frac{\# (y^{(i)}_t = k \& y^{(i)}_{t-1} = j)}{\# (y^{(i)}_{t-1} = j)} \quad \forall i, t > 1, j, k$$

$$\hat{A}_{jk} = \frac{\# (x^{(i)}_t = k \& y^{(i)}_t = j)}{\# (y^{(i)}_t = j)} \quad \forall i, t, j, k$$

Can solve in closed form, which yields...
HMM Parameters:

Emission matrix, A, where $P(X_t = k | Y_t = j) = A_{j,k}, \forall t, k$

Transition matrix, B, where $P(Y_t = k | Y_{t-1} = j) = B_{j,k}, \forall t, k$

Assumption: $y_0 = \text{START}$

Generative Story:

$Y_t \sim \text{Multinomial}(B_{Y_{t-1}}) \ \forall t$

$X_t \sim \text{Multinomial}(A_{Y_t}) \ \forall t$

For notational convenience, we fold the initial probabilities C into the transition matrix B by our assumption.
Joint Distribution:
\[y_0 = \text{START} \]

\[
p(x, y | y_0) = \prod_{t=1}^{T} p(x_t | y_t) p(y_t | y_{t-1})
\]

\[
= \prod_{t=1}^{T} A_{y_t, x_t} B_{y_{t-1}, y_t}
\]
Supervised Learning for HMMs

Learning an HMM decomposes into solving two (independent) Mixture Models

\[D = \left\{ (x^{(i)}, y^{(i)}) \right\} _{i=1}^{N} \]

Likelihood:
\[\mathcal{L}(A, B) = \frac{1}{N} \sum_{i=1}^{N} \log p(x^{(i)}, y^{(i)}) \]
\[= \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \log p(x^{(i)}_t | y^{(i)}_t, B) + \log p(x^{(i)}_t | y^{(i)}_t, A) \right] \]

MLE:
\[\hat{A}, \hat{B} = \arg \max \mathcal{L}(A, B) \]
\[\hat{A} = \arg \max \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \log p(x^{(i)}_t | y^{(i)}_t, A) \right] \]
\[\hat{B} = \arg \max \sum_{i=1}^{N} \left[\sum_{t=1}^{T} \log p(x^{(i)}_t | y^{(i)}_t, B) \right] \]

\(\hat{A} \) can be solved in closed form to get...

\[\hat{A}_{jk} = \frac{\# (y^{(i)}_t = k \text{ and } y^{(i)}_{t-1} = j)}{\# (y^{(i)}_{t-1} = j)} \]

\[\hat{B}_{jk} = \frac{\# (x^{(i)}_t = k \text{ and } y^{(i)}_t = j)}{\# (y^{(i)}_t = j)} \]