10-301/10-601 Learning Objectives

Course Level Learning Outcomes

1. Course Level
 a. Implement and analyze existing learning algorithms, including well-studied methods for classification, regression, structured prediction, clustering, and representation learning
 b. Integrate multiple facets of practical machine learning in a single system: data preprocessing, learning, regularization and model selection
 c. Describe the formal properties of models and algorithms for learning and explain the practical implications of those results
 d. Compare and contrast different paradigms for learning (supervised, unsupervised, etc.)
 e. Design experiments to evaluate and compare different machine learning techniques on real-world problems
 f. Employ probability, statistics, calculus, linear algebra, and optimization in order to develop new predictive models or learning methods
 g. Given a description of a ML technique, analyze it to identify (1) the expressive power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the size and complexity of the search space; (4) the computational properties of the algorithm: (5) any guarantees (or lack thereof) regarding termination, convergence, correctness, accuracy or generalization power.

ML Basics

1. Course Overview / Decision Trees
 a. Formulate a well-posed learning problem for a real-world task by identifying the task, performance measure, and training experience
 b. Describe common learning paradigms in terms of the type of data available and when, the form of prediction, and the structure of the output prediction
 c. Identify examples of the ethical responsibilities of an ML expert

2. Decision Trees / Information Theory
 a. Formalize a learning problem by identifying the input space, output space, hypothesis space, and target function
 b. Implement Decision Tree training and prediction
 c. Use effective splitting criteria for Decision Trees and be able to define entropy, conditional entropy, and mutual information / information gain
 d. Explain the difference between memorization and generalization [CIML]
 e. Describe the inductive bias of a decision tree
 f. Judge whether a decision tree is "underfitting" or "overfitting"
 g. Explain the difference between true error and training error
h. Implement a pruning or early stopping method to combat overfitting in Decision Tree learning

3. k-Nearest Neighbors
 a. Describe a dataset as points in a high dimensional space [CIML]
 b. Implement k-Nearest Neighbors with O(N) prediction
 c. Describe the inductive bias of a k-NN classifier and relate it to feature scale [a la. CIML]
 d. Sketch the decision boundary for a learning algorithm (compare k-NN and DT)
 e. State Cover & Hart (1967)'s large sample analysis of a nearest neighbor classifier
 f. Invent "new" k-NN learning algorithms capable of dealing with even k

4. Model Selection
 a. Plan an experiment that uses training, validation, and test datasets to predict the performance of a classifier on unseen data (without cheating)
 b. Explain the difference between (1) training error, (2) validation error, (3) cross-validation error, (4) test error, and (5) true error
 c. For a given learning technique, identify the model, learning algorithm, parameters, and hyperparameters
 d. Define "instance-based learning" or "nonparametric methods"
 e. Select an appropriate algorithm for optimizing (aka. learning) hyperparameters

5. Perceptron
 a. Explain the difference between online learning and batch learning
 b. Implement the perceptron algorithm for binary classification [CIML]
 c. Determine whether the perceptron algorithm will converge based on properties of the dataset, and the limitations of the convergence guarantees
 d. Describe the inductive bias of perceptron and the limitations of linear models
 e. Draw the decision boundary of a linear model
 f. Identify whether a dataset is linearly separable or not
 g. Defend the use of a bias term in perceptron (shifting points after projection onto weight vector)

ML as Optimization

1. Linear Regression
 a. Design k-NN Regression and Decision Tree Regression
 b. Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
 c. Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
 d. Identify situations where least squares regression has exactly one solution or infinitely many solutions

2. Optimization for ML (Linear Regression)
 a. Apply gradient descent to optimize a function
 b. Apply stochastic gradient descent (SGD) to optimize a function
c. Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
d. Distinguish between convex, concave, and nonconvex functions
e. Obtain the gradient (and Hessian) of a (twice) differentiable function
3. Logistic Regression (Probabilistic Learning)
 a. Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
 b. Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
 c. Explain the practical reasons why we work with the log of the likelihood
 d. Implement logistic regression for binary or multiclass classification
 e. Prove that the decision boundary of binary logistic regression is linear
4. Feature Engineering / Regularization
 a. Engineer appropriate features for a new task
 b. Use feature selection techniques to identify and remove irrelevant features
 c. Identify when a model is overfitting
 d. Add a regularizer to an existing objective in order to combat overfitting
 e. Explain why we should not regularize the bias term
 f. Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
 g. Describe feature engineering in common application areas

Deep Learning

1. Neural Networks
 a. Explain the biological motivations for a neural network
 b. Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
 c. Explain the reasons why a neural network can model nonlinear decision boundaries for classification
 d. Compare and contrast feature engineering with learning features
 e. Identify (some of) the options available when designing the architecture of a neural network
 f. Implement a feed-forward neural network
2. Backpropagation
 a. Construct a computation graph for a function as specified by an algorithm
 b. Carry out the backpropagation on an arbitrary computation graph
 c. Construct a computation graph for a neural network, identifying all the given and intermediate quantities that are relevant
 d. Instantiate the backpropagation algorithm for a neural network
 e. Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) when the parameters of a model are comprised of several matrices corresponding to different layers of a neural network
 f. Apply the empirical risk minimization framework to learn a neural network
g. Use the finite difference method to evaluate the gradient of a function
h. Identify when the gradient of a function can be computed at all and when it can be computed efficiently

3. Deep Learning
 a. Implement the common layers found in Convolutional Neural Networks (CNNs) such as linear layers, convolution layers, max-pooling layers, and rectified linear units (ReLU)
 b. Explain how the shared parameters of a convolutional layer could learn to detect spatial patterns in an image
 c. Describe the backpropagation algorithm for a CNN
 d. Identify the parameter sharing used in a basic recurrent neural network, e.g. an Elman network
 e. Apply a recurrent neural network to model sequence data
 f. Differentiate between an RNN and an RNN-LM

Learning Theory

1. Learning Theory: PAC Learning
 a. Identify the properties of a learning setting and assumptions required to ensure low generalization error
 b. Distinguish true error, train error, test error
 c. Define PAC and explain what it means to be approximately correct and what occurs with high probability
 d. Define sample complexity
 e. Apply sample complexity bounds to real-world learning examples
 f. Distinguish between a large sample and a finite sample analysis
 g. Theoretically justify regularization

Generative Models

1. Oracles, Sampling, Generative vs. Discriminative
 a. Sample from common probability distributions
 b. Write a generative story for a generative or discriminative classification or regression model
 c. Pretend to be a data generating oracle
 d. Provide a probabilistic interpretation of linear regression
 e. Use the chain rule of probability to contrast generative vs. discriminative modeling
 f. Define maximum likelihood estimation (MLE) and maximum conditional likelihood estimation (MCLE)
 g. For linear regression, show that the parameters which minimize squared error are equivalent to those that maximize conditional likelihood

2. MLE and MAP
 a. Recall probability basics, including but not limited to: discrete and continuous random variables, probability mass functions, probability density functions, events vs. random
variables, expectation and variance, joint probability distributions, marginal probabilities, conditional probabilities, independence, conditional independence
b. Describe common probability distributions such as the Beta, Dirichlet, Multinomial, Categorical, Gaussian, Exponential, etc.
c. State the principle of maximum likelihood estimation and explain what it tries to accomplish
d. State the principle of maximum a posteriori estimation and explain why we use it
e. Derive the MLE or MAP parameters of a simple model in closed form

3. Naive Bayes
 a. Write the generative story for Naive Bayes
 b. Create a new Naive Bayes classifier using your favorite probability distribution as the event model
 c. Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of Bernoulli Naive Bayes
d. Motivate the need for MAP estimation through the deficiencies of MLE
e. Apply the principle of maximum a posteriori (MAP) estimation to learn the parameters of Bernoulli Naive Bayes
 f. Select a suitable prior for a model parameter
g. Describe the tradeoffs of generative vs. discriminative models
 h. Implement Bernoulli Naives Bayes
 i. Employ the method of Lagrange multipliers to find the MLE parameters of Multinomial Naive Bayes
 j. Describe how the variance affects whether a Gaussian Naive Bayes model will have a linear or nonlinear decision boundary

Graphical Models

1. Hidden Markov Models
 a. Show that structured prediction problems yield high-computation inference problems
 b. Define the first order Markov assumption
c. Draw a Finite State Machine depicting a first order Markov assumption
d. Derive the MLE parameters of an HMM
e. Define the three key problems for an HMM: evaluation, decoding, and marginal computation
 f. Derive a dynamic programming algorithm for computing the marginal probabilities of an HMM
g. Interpret the forward-backward algorithm as a message passing algorithm
 h. Implement supervised learning for an HMM
 i. Implement the forward-backward algorithm for an HMM
 j. Implement the Viterbi algorithm for an HMM
 k. Implement a minimum Bayes risk decoder with Hamming loss for an HMM

2. Bayesian Networks
 a. Identify the conditional independence assumptions given by a generative story or a specification of a joint distribution
 b. Draw a Bayesian network given a set of conditional independence assumptions
c. Define the joint distribution specified by a Bayesian network
d. User domain knowledge to construct a (simple) Bayesian network for a real-world modeling problem
e. Depict familiar models as Bayesian networks
f. Use d-separation to prove the existence of conditional independencies in a Bayesian network
g. Employ a Markov blanket to identify conditional independence assumptions of a graphical model
h. Develop a supervised learning algorithm for a Bayesian network
i. Use samples from a joint distribution to compute marginal probabilities
j. Sample from the joint distribution specified by a generative story
k. Implement a Gibbs sampler for a Bayesian network

Reinforcement Learning

1. Reinforcement Learning: Value & Policy Iteration
 a. Compare the reinforcement learning paradigm to other learning paradigms
 b. Cast a real-world problem as a Markov Decision Process
 c. Depict the exploration vs. exploitation tradeoff via MDP examples
d. Explain how to solve a system of equations using fixed point iteration
e. Define the Bellman Equations
f. Show how to compute the optimal policy in terms of the optimal value function
g. Explain the relationship between a value function mapping states to expected rewards and a value function mapping state-action pairs to expected rewards
h. Implement value iteration
i. Implement policy iteration
j. Contrast the computational complexity and empirical convergence of value iteration vs. policy iteration
k. Identify the conditions under which the value iteration algorithm will converge to the true value function
l. Describe properties of the policy iteration algorithm

2. Reinforcement Learning: Q-Learning
 a. Apply Q-Learning to a real-world environment
 b. Implement Q-learning
c. Identify the conditions under which the Q-learning algorithm will converge to the true value function
d. Adapt Q-learning to Deep Q-learning by employing a neural network approximation to the Q function
e. Describe the connection between Deep Q-Learning and regression

Learning Paradigms

1. SVMs (not covered in F21)
 a. Motivate the learning of a decision boundary with large margin
b. Compare the decision boundary learned by SVM with that of Perceptron
c. Distinguish unconstrained and constrained optimization
d. Compare linear and quadratic mathematical programs
e. Derive the hard-margin SVM primal formulation
f. Derive the Lagrangian dual for a hard-margin SVM
g. Describe the mathematical properties of support vectors and provide an intuitive explanation of their role
h. Draw a picture of the weight vector, bias, decision boundary, training examples, support vectors, and margin of an SVM
i. Employ slack variables to obtain the soft-margin SVM
j. Implement an SVM learner using a black-box quadratic programming (QP) solver

2. Kernels (not covered in F21)
 a. Employ the kernel trick in common learning algorithms
 b. Explain why the use of a kernel produces only an implicit representation of the transformed feature space
 c. Use the "kernel trick" to obtain a computational complexity advantage over explicit feature transformation
 d. Sketch the decision boundaries of a linear classifier with an RBF kernel

3. K-Means
 a. Distinguish between coordinate descent and block coordinate descent
 b. Define an objective function that gives rise to a "good" clustering
 c. Apply block coordinate descent to an objective function preferring each point to be close to its nearest objective function to obtain the K-Means algorithm
 d. Implement the K-Means algorithm
 e. Connect the nonconvexity of the K-Means objective function with the (possibly) poor performance of random initialization

4. PCA and Dimensionality Reduction
 a. Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
 b. Identify examples of high dimensional data and common use cases for dimensionality reduction
 c. Draw the principal components of a given toy dataset
 d. Establish the equivalence of minimization of reconstruction error with maximization of variance
 e. Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
 f. Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
 g. Use common methods in linear algebra to obtain the principal components

5. Ensemble Methods, Boosting
 a. Implement the Weighted Majority Algorithm
 b. Implement AdaBoost
 c. Distinguish what is learned in the Weighted Majority Algorithm vs. AdaBoost
 d. Contrast the theoretical result for the Weighted Majority Algorithm to that of Perceptron
e. Explain a surprisingly common empirical result regarding Adaboost train/test curves

6. Recommender Systems
 a. Compare and contrast the properties of various families of recommender system algorithms: content filtering, collaborative filtering, neighborhood methods, latent factor methods
 b. Formulate a squared error objective function for the matrix factorization problem
 c. Implement unconstrained matrix factorization with a variety of different optimization techniques: gradient descent, stochastic gradient descent, alternating least squares
 d. Offer intuitions for why the parameters learned by matrix factorization can be understood as user factors and item factors

References

Several of these learning objectives are copied or adapted from Daume III (2018) “CIML.”