1 Probability and Statistics

You should be familiar with event notations for probabilities, i.e. \(P(A \cup B) \) and \(P(A \cap B) \), where \(A \) and \(B \) are binary events.

In this class, however, we will mainly be dealing with random variable notations, where \(A \) and \(B \) are random variables that can take on different states, i.e. \(a_1, a_2, \) and \(b_1, b_2 \), respectively. Below are some notation equivalents, as well as basic probability rules to keep in mind.

- \(P(A = a_1 \cap B = b_1) = P(A = a_1, B = b_1) = p(a_1, b_1) \)
- \(P(A = a_1 \cup B = b_1) = \sum_{b \in B} p(a_1, b) + \sum_{a \in A} p(a, b_1) - p(a_1, b_1) \)
- \(p(a_1 \mid b_1) = \frac{p(a_1, b_1)}{p(b_1)} \)
- \(p(a_1) = \sum_{b \in B} p(a_1, b) \)

1. Two random variables, \(A \) and \(B \), each can take on two values, \(a_1, a_2, \) and \(b_1, b_2, \) respectively. \(a_1 \) and \(b_2 \) are considered disjoint (mutually exclusive). \(P(A = a_1) = 0.5, P(B = b_2) = 0.5. \)
 - What is \(p(a_1, b_2) \) ?
 - What is \(p(a_1, b_1) \) ?
 - What is \(p(a_1 \mid b_2) \) ?

2. Now, instead, \(a_1 \) and \(b_2 \) are not disjoint, but the two random variables \(A \) and \(B \) are independent.
 - What is \(p(a_1, b_2) \) ?
 - What is \(p(a_1, b_1) \) ?
 - What is \(p(a_1 \mid b_2) \) ?

3. A student is looking at her activity tracker (Fitbit/Apple Watch) data and she notices that she seems to sleep better on days that she exercises. They observe the following:
Exercise Good Sleep Probability
yes yes 0.3
yes no 0.2
no no 0.4
no yes 0.1

• What is the $P(\text{GoodSleep} = \text{yes} \mid \text{Exercise} = \text{yes})$?

• Why doesn’t $P(\text{GoodSleep} = \text{yes}, \text{Exercise} = \text{yes}) = P(\text{GoodSleep} = \text{yes}) \cdot P(\text{Exercise} = \text{yes})$?

• The student merges her activity tracker data with her food logs and finds that the $P(\text{Eatwell} = \text{yes} \mid \text{Exercise} = \text{yes}, \text{GoodSleep} = \text{yes})$ is 0.25. What is the probability of all three happening on the same day?

4. What is the expectation of X where X is a single roll of a fair 6-sided dice ($S = \{1, 2, 3, 4, 5, 6\}$)? What is the variance of X?

5. Imagine that we had a new dice where the sides were $S = \{3, 4, 5, 6, 7, 8\}$. How do the expectation and the variance compare to our original dice?

2 Calculus

1. If $f(x) = x^3e^x$, find $f'(x)$.

2. If $f(x) = e^x$, $g(x) = 4x^2 + 2$, find $h'(x)$, where $h(x) = f(g(x))$.

3. If $f(x, y) = y \log(1 - x) + (1 - y) \log(x)$, $x \in (0, 1)$, evaluate $\frac{\partial f(x,y)}{\partial x}$ at the point $(\frac{1}{2}, \frac{1}{2})$.

4. Find $\frac{\partial}{\partial w_j} x^T w$, where x and w are M-dimensional real-valued vectors and $1 \leq j \leq M$.
3. **Vectors, Matrices, and Geometry**

1. **Inner Product**: \(\mathbf{u} = [6 \ 1 \ 2]^T, \mathbf{v} = [3 \ -10 \ -2]^T \), what is the inner product of \(\mathbf{u} \) and \(\mathbf{v} \)? What is the geometric interpretation?

2. **Cauchy-Schwarz inequality** (Optional): Given \(\mathbf{u} = [3 \ 1 \ 2]^T, \mathbf{v} = [3 \ -1 \ 4]^T \), what is \(||\mathbf{u}||^2 \) and \(||\mathbf{v}||^2 \)? What is \(\mathbf{u} \cdot \mathbf{v} \)? How do \(\mathbf{u} \cdot \mathbf{v} \) and \(||\mathbf{u}||^2 ||\mathbf{v}||^2 \) compare? Is this always true?

3. **Matrix algebra.** Generally, if \(\mathbf{A} \in \mathbb{R}^{M \times N} \) and \(\mathbf{B} \in \mathbb{R}^{N \times P} \), then \(\mathbf{AB} \in \mathbb{R}^{M \times P} \) and \((\mathbf{AB})_{ij} = \sum_k A_{ik} B_{kj} \).

 Given \(\mathbf{A} = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & -3 & 2 \\ 1 & 1 & -1 \\ 3 & -2 & 2 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \).

 - What is \(\mathbf{AB} \)? Does \(\mathbf{BA} = \mathbf{AB} \)? What is \(\mathbf{Bu} \)?
 - What is rank of \(\mathbf{A} \)?
 - What is \(\mathbf{A}^T \)?
 - Calculate \(\mathbf{uv}^T \).
 - What are the eigenvalues of \(\mathbf{A} \)?

4. **Geometry**: Given a line \(2x + y = 2 \) in the two-dimensional plane,

 - If a given point \((\alpha, \beta)\) satisfies \(2\alpha + \beta > 2\), where does it lie relative to the line?
 - What is the relationship of vector \(\mathbf{v} = [2, 1]^T \) to this line?
 - What is the distance from origin to this line?
4 CS Fundamentals

1. For each \((f, g)\) functions below, is \(f(n) \in \mathcal{O}(g(n))\) or \(g(n) \in \mathcal{O}(f(n))\) or both?
 - \(f(n) = \log_2(n), g(n) = \log_3(n)\)
 - \(f(n) = 2^n, g(n) = 3^n\)
 - \(f(n) = \frac{n}{50}, g(n) = \log_{10}(n)\)

2. Find the DFS traversal and BFS traversal of the following binary tree. What are the time complexities of the traversals?