Instructions:

- Fill in your name and Andrew ID above. Be sure to write neatly, or you may not receive credit for your exam.

- Clearly mark your answers in the allocated space on the front of each page. If needed, use the back of a page for scratch space, but you will not get credit for anything written on the back of a page. If you have made a mistake, cross out the invalid parts of your solution, and circle the ones which should be graded.

- No electronic devices may be used during the exam.

- Please write all answers in pen.

- You have N/A to complete the exam. Good luck!
Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?
- Matt Gormley
- Marie Curie
- Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?
- Matt Gormley
- Marie Curie
- Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?
- Stephen Hawking
- Albert Einstein
- Isaac Newton
- I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new answer(s):

Select all that apply: Which are scientists?
- Stephen Hawking
- Albert Einstein
- Isaac Newton
- I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the given space. You may cross out answers or parts of answers, but the final answer must still be within the given space.

Fill in the blank: What is the course number?

10-601 10-7601
1 Decision Trees

1. Perceptron Trees: To exploit the desirable properties of decision tree classifiers and perceptrons, Adam came up with a new algorithm called “perceptron trees”, which combines features from both. Perceptron trees are similar to decision trees, however each leaf node is a perceptron, instead of a majority vote.

To create a perceptron tree, the first step is to follow a regular decision tree learning algorithm (such as ID3) and perform splitting on attributes until the specified maximum depth is reached. Once maximum depth has been reached, at each leaf node, a perceptron is trained on the remaining attributes which have not been used up in that branch. Classification of a new example is done via a similar procedure. The example is first passed through the decision tree based on its attribute values. When it reaches a leaf node, the final prediction is made by running the corresponding perceptron at that node.

Assume that you have a dataset with 6 binary attributes (A, B, C, D, E, F) and two output labels (-1 and 1). A perceptron tree of depth 2 on this dataset is given below. Weights of the perceptron are given in the leaf nodes. Assume bias=1 for each perceptron:

![Perceptron Tree of max depth=2](image)

(a) Numerical answer: Given a sample \(x = [1, 1, 0, 1, 0, 1] \), predict the output label for this sample

1, Explanation: A=1 and D=1 so the point is sent to the right-most leaf node, where the perceptron output is \((1*1)+(0*0)+((-1)*0)+(1*1)+1 = 3\). Prediction = \(\text{sign}(3) = 1\).
(b) **True or False:** The decision boundary of a perceptron tree will *always* be linear.

- True
- False

False, since decision tree boundaries need not be linear.

(c) **True or False:** For small values of max depth, decision trees are *more* likely to underfit the data than perceptron trees

- True
- False

True. For smaller values of max depth, decision trees essentially degenerate into majority-vote classifiers at the leaves. On the other hand, perceptron trees have the capacity to make use of “unused” attributes at the leaves to predict the correct class. Decision trees: Non-linear decision boundaries
Perceptron: Ability to gracefully handle unseen attribute values in training data/Better generalization at leaf nodes

2. (2 points) **Select all that apply:** Given a set of input features x, where $x \in \mathbb{R}^n$, you are tasked with predicting a label for y, where $y = 1$ or $y = -1$. You have no knowledge of about the distribution of x and of y. Which of the following methods are appropriate?

- Perceptron
- k-Nearest Neighbors
- Linear Regression
- Decision Tree with unlimited depth
- None of the Above

Kth Nearest Neighbours and Decision Tree with unlimited depth since these two methods do not making the assumption of linear separation.

3. (2 points) ID3 algorithm is a greedy algorithm for growing Decision Tree and it suffers the same problem as any other greedy algorithm that finds only locally optimal trees. Which of the following method(s) can make ID3 ”less greedy”? **Select all that apply:**

- Use a subset of attributes to grow the decision tree
- Use different subsets of attributes to grow many decision trees
- Change the criterion for selecting attributes from information gain (mutual information) to information gain ratio (mutual information divided by entropy of splitting attributes) to avoid selecting attributes with high degree of randomness
- Keep using mutual information, but select 2 attributes instead of one at each step, and grow two separate subtrees. If there are more than 2 subtrees in total, keep
only the top 2 with the best performance (e.g., top 2 with lowest training errors at the current step)

2nd and 4th choices; 1st choice should be wrong as the best performance will be determined by the deepest tree. Any shallower tree will make more mistakes, so ensemble learning can only make performance worse and it won’t change the local optimality of the forest.

4. [2 pts] ID3 algorithm is guaranteed to find the optimal solution for decision tree.

 Circle one: True False

 False.

5. [2 pts] One advantages of decision trees algorithm is that they are not easy to overfit comparing to naive Bayes.

 Circle one: True False

 False.
2 K Nearest Neighbors

1. **True or False:** Consider a binary (two classes) classification problem using k-nearest neighbors. We have n 1-dimensional training points \(\{x_1, x_2, ..., x_n\} \) with \(x_i \in \mathbb{R} \), and their corresponding labels \(\{y_1, y_2, ..., y_n\} \) with \(y_i \in \{0, 1\} \).

Assume the data points \(x_1, x_2, ..., x_n \) are sorted in the ascending order, we use Euclidean distance as the distance metric, and a point can be its own neighbor. True or False: We **CAN** build a decision tree (with decisions at each node has the form “\(x \geq t \)” and “\(x < t \)”, for \(t \in \mathbb{R} \)) that behave exactly the same as the 1-nearest neighbor classifier, on this dataset.

- True
- False

True, we can build a decision tree by setting the internal nodes at the mid-points between each pair of adjacent training points.

2. **Select all that apply:** Please select all that apply about kNN in the following options:

Assume a point can be its own neighbor.

- k-NN works great with a small amount of data, but struggles when the amount of data becomes large.
- k-NN is sensitive to outliers; therefore, in general we decrease k to avoid overfitting.
- k-NN can only be applied to classification problems, but it cannot be used to solve regression problems.
- We can always achieve zero training error (perfect classification) with k-NN, but it may not generalize well in testing.

True: A, Curse of dimensionality; D, by setting \(k = 1 \)
False: B, we increase \(k \) to avoid overfitting; C, KNN regression

3. (1 point) **Select one:** A k-Nearest Neighbor model with a large value of \(K \) is analogous to...

- A short Decision Tree with a low branching factor
- A short Decision Tree with a high branching factor
- A long Decision Tree with a low branching factor
- A long Decision Tree with a high branching factor

A short Decision Tree with a low branching factor
4. (1 point) **Select one.** Imagine you are using a k-Nearest Neighbor classifier on a data set with lots of noise. You want your classifier to be less sensitive to the noise. Which is more likely to help and with what side-effect?

- Increase the value of $k \Rightarrow$ Increase in prediction time
- Decrease the value of $k \Rightarrow$ Increase in prediction time
- Increase the value of $k \Rightarrow$ Decrease in prediction time
- Decrease the value of $k \Rightarrow$ Decrease in prediction time

Increase the value of $k \Rightarrow$ Increase in prediction time

5. (1 point) **Select all that apply:** Identify the correct relationship between bias, variance, and the hyperparameter k in the k-Nearest Neighbors algorithm:

- Increasing k leads to increase in bias
- Decreasing k leads to increase in bias
- Increasing k leads to increase in variance
- Decreasing k leads to increase in variance

A and D

6. Consider a training dataset for a regression task as follows.

$$
\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(N)}, y^{(N)})\}
$$

with $x^{(i)} \in \mathbb{R}$ and $y^{(i)} \in \mathbb{R}$.

For regression with k-nearest neighbor, we make predictions on unseen data points similar to the classification algorithm, but instead of a majority vote, we take the mean of the output values of the k nearest points to some new data point x. That is,

$$
h(x) = \frac{1}{k} \sum_{i \in \mathcal{N}(x, \mathcal{D})} y^{(i)}
$$

where $\mathcal{N}(x, \mathcal{D})$ is the set of indices of the k closest training points to x.
Please answer the following questions using this example dataset:

The red X’s denote training points and the black semi-circles A, B, C denote test points of unknown output values. For convenience, all training data points have integer input and output values.

Any ties are broken by selecting the point with the lower x value.

(a) With $k = 1$, what is the mean squared error on the training set?

0 ± 0.00001

(b) With $k = 2$, what is the predicted value at A?

4 ± 0.00001

(c) With $k = 2$, what is the predicted value at B?
5 ± 0.00001

(d) With $k = 3$, what is the predicted value at C?

\[
\text{[Blank]}
\]

7 ± 0.00001

(e) With $k = 8$, what is the predicted value at C?

\[
\text{[Blank]}
\]

5.375 ± 0.1

(f) With $k = N$, for any dataset D with the form specified in the beginning of this question, write down a mathematical expression for the predicted value $\hat{y} = h(x)$. Your response shouldn’t include a reference to the neighborhood function $\mathcal{N}()$.

\[
\hat{y} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)}
\]
3 Model Selection and Errors

1. **Train and test errors:** In this problem, we will see how you can debug a classifier by looking at its train and test errors. Consider a classifier trained till convergence on some training data D_{train}, and tested on a separate test set D_{test}. You look at the test error, and find that it is very high. You then compute the training error and find that it is close to 0.

 1. **[4 pts]** Which of the following is expected to help? Select all that apply.

 (a) Increase the training data size.
 (b) Decrease the training data size.
 (c) Increase model complexity (For example, if your classifier is an SVM, use a more complex kernel. Or if it is a decision tree, increase the depth).
 (d) Decrease model complexity.
 (e) Train on a combination of D_{train} and D_{test} and test on D_{test}
 (f) Conclude that Machine Learning does not work.

 a and d

 2. **[5 pts]** Explain your choices. The model is overfitting. In order to address the problem, we can either increase training data size or decrease model complexity. We should never do (e), the model shouldn’t see any testing data in the training process.

 3. **[2 pts]** What is this scenario called? **Overfitting**

 4. **[1 pts]** Say you plot the train and test errors as a function of the model complexity. Which of the following two plots is your plot expected to look like?

 ![Plot (a)](image1.png) ![Plot (b)](image2.png)
B. When model complexity increases, model can overfit better, so training error will decrease. But when it overfits too much, testing error will increase.

2. **Training Sample Size:** In this problem, we will consider the effect of training sample size n on a logistic regression classifier with d features. The classifier is trained by optimizing the conditional log-likelihood. The optimization procedure stops if the estimated parameters perfectly classify the training data or they converge.

The following plot shows the general trend for how the training and testing error change as we increase the sample size $n = |S|$. Your task in this question is to analyze this plot and identify which curve corresponds to the training and test error. Specifically:

![Graph showing training and testing error vs. training set size]

1. Which curve represents the training error? **Please provide 1–2 sentences of justification.** Curve (ii) is the training set. Training error increases as the training set increases in size (more points to account for). However, the increase tapers out when the model generalizes well. Evidently, curve (i) is testing, since larger training sets better form generalized models, which reduces testing error.

2. In one word, what does the gap between the two curves represent? **Overfitting**

3. What are the effects of the following on overfitting? Choose the best answer.

 (a) Increasing decision tree max depth.

 - Less likely to overfit
 - More likely to overfit

 More likely to overfit
(b) Increasing decision tree mutual information split threshold.
 - Less likely to overfit
 - More likely to overfit
 Less likely to overfit

(c) Increasing decision tree max number of nodes.
 - Less likely to overfit
 - More likely to overfit
 More likely to overfit

(d) Increasing \(k \) in \(k \)-nearest neighbor.
 - Less likely to overfit
 - More likely to overfit
 Less likely to overfit

(e) Increasing the training data size for decision trees. Assume that training data points are drawn randomly from the true data distribution.
 - Less likely to overfit
 - More likely to overfit
 Less likely to overfit

(f) Increasing the training data size for 1-nearest neighbor. Assume that training data points are drawn randomly from the true data distribution.
 - Less likely to overfit
 - More likely to overfit
 Less likely to overfit

4. Consider a learning algorithm that uses two hyperparameters, \(\gamma \) and \(\omega \), and it takes 1 hour to train regardless of the size of the training set.

We choose to do random subsampling cross-validation, where we do \(K \) runs of cross-validation and for each run, we randomly subsample a fixed fraction \(\alpha N \) of the dataset for validation and use the remaining for training, where \(\alpha \in (0, 1) \) and \(N \) is the number of data points.

(a) In combination with the cross-validation method above, we choose to do grid search on discrete values for the two hyperparameters.

Given \(N = 1000 \) data points, \(K = 4 \) runs, and \(\alpha = 0.25 \), if we have 100 hours to complete the entire cross-validation process, what is the most number of discrete
values of γ that we can include in our search if we also want to include 8 values of ω? Assume that any computations other than training are negligible.

$3 + -0.001$. Round $100/4/8 = 3.33$ down to 3.

(b) In one sentence, give one advantage of increasing the value of α.

More data used for validation, giving a better estimate of performance on held-out data.
4 Perceptron

1. Select all that apply: Let \(S = \{(x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\} \) be \(n \) linearly separable points by a separator through the origin in \(\mathbb{R}^d \). Let \(S' \) be generated from \(S \) as: \(S' = \{(c x^{(1)}, y^{(1)}), \ldots, (c x^{(n)}, y^{(n)})\} \), where \(c > 1 \) is a constant. Suppose that we would like to run the perceptron algorithm on both data sets separately, and that the perceptron algorithm converges on \(S \). Which of the following statements are true?

 - The mistake bound of perceptron on \(S' \) is larger than the mistake bound on \(S \)
 - The perceptron algorithm when run on \(S \) and \(S' \) returns the same classifier, modulo constant factors (i.e., if \(w_S \) and \(w_{S'} \) are outputs of the perceptron for \(S \) and \(S' \), then \(w_S = c_1 w'_{S} \) for some constant \(c_1 \)).
 - The perceptron algorithm converges on \(S' \).

 B and C are true. Simply follow the perceptron update rule and we see that the update on \(w_S \) and \(w_{S'} \) is identical up to the constant \(c \). A is false as the maximum margin between any point to the decision hyperplane is also scaled up by \(c \), and the mistake bound is unchanged.

2. True or False: We know that if the samples are linearly separable, the perceptron algorithm finds a separating hyperplane in a finite number of steps. Given such a dataset with linearly separable samples, select whether the following statement is True or False: The running time of the perceptron algorithm depends on the sample size \(n \).

 - True
 - False

 False. For a linearly separable dataset, the runtime of the perceptron algorithm does not depend on the size of the training data. The proof can be found on slide 34 of http://www.cs.cmu.edu/~10701/slides/8_Perceptron.pdf

3. (1 point) Select all that apply: Which of the following are considered as inductive bias of perceptron.

 - Assume that most of the cases in a small neighborhood in feature space belong to the same class
 - Decision boundary should be linear
 - Prefer to correct the most recent mistakes
 - Prefer the smallest hypothesis that explains the data

 BC

4. (1 point) True or False: If the training data is linearly separable and representative of the true distribution, the perceptron algorithm always finds the optimal decision boundary for the true distribution.

 - True
5. (1 point) **True or False:** Consider two datasets $D^{(1)}$ and $D^{(2)}$ where $D^{(1)} = \{(x^{(1)}_1, y^{(1)}_1), ..., (x^{(1)}_n, y^{(1)}_n)\}$ and $D^{(2)} = \{(x^{(2)}_1, y^{(2)}_1), ..., (x^{(2)}_m, y^{(2)}_m)\}$ such that $x^{(1)}_i \in \mathbb{R}^{d_1}$, $x^{(2)}_i \in \mathbb{R}^{d_2}$. Suppose $d_1 > d_2$ and $n > m$. Then the maximum number of mistakes a perceptron algorithm will make is always higher on dataset $D^{(1)}$ than on dataset $D^{(2)}$.

- True
- False

False.

4.1 Perceptron Calculation

Suppose you are given the following dataset:

<table>
<thead>
<tr>
<th>Example Number</th>
<th>X_1</th>
<th>X_2</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>+1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>+1</td>
</tr>
<tr>
<td>4</td>
<td>-3</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

You wish to perform the Batch Perceptron algorithm on this data. Assume you start with initial weights $\theta^T = [0, 0]$, bias $b = 0$ and that we pass all of our examples through in order of their example number.

1. (1 point) **Numerical answer:** What would be the updated weight vector θ be after we pass example 1 through the perceptron algorithm?

 $[1, -2]$

2. (1 point) **Numerical answer:** What would be the updated bias b be after we pass example 1 through our the Perceptron algorithm?

 -1

3. (1 point) **Numerical answer:** What would be the updated weight vector θ be after we pass example 2 through the Perceptron algorithm?

 $[0, 1]$
4. (1 point) **Numerical answer:** What would be the updated bias b be after we pass example 2 through the Perceptron algorithm?

-1

5. (1 point) **Numerical answer:** What would be the updated weight vector θ be after we pass example 3 through the Perceptron algorithm?

$[1, -2]$

6. (1 point) **Numerical answer:** What would be the updated bias b be after we pass example 3 through the Perceptron algorithm?

-1

7. (1 point) **True or False:** You friend stops you here and tells you that you do not need to update the Perceptron weights or the bias anymore, is this true or false?

- True
- False

True, all points are classified correctly.

8. (2 points) **True or False:** Data (X,Y) has a non-linear decision boundary. Fortunately there is a function \mathcal{F} that maps (X,Y) to $(\mathcal{F}(X),Y)$ such that $(\mathcal{F}(X),Y)$ is linearly separable. We have tried to build a modified perceptron to classify (X,Y). Is the given (modified) perceptron update rule correct?

if $\text{sign}(w\mathcal{F}(x^{(i)}) + b) \neq y^{(i)}$;

\[w' = w + y^{(i)}\mathcal{F}(x^{(i)}) \]
\[b' = b + y^{(i)} \]

- True
- False

True
5 Linear Regression

1. (1 point) Select one: The closed form solution for linear regression is $\theta = (X^T X)^{-1} X^T y$.
 Suppose you have $n = 35$ training examples and $m = 5$ features (excluding the bias term). Once the bias term is now included, what are the dimensions of X, y, θ in the closed form equation?
 - X is 35×6, y is 35×1, θ is 6×1
 - X is 35×6, y is 35×6, θ is 6×6
 - X is 35×5, y is 35×1, θ is 5×1
 - X is 35×5, y is 35×5, θ is 5×5

 A.

2. (1 point) (True or False) A multi-layer perceptron model with linear activation is equivalent to linear regression model.
 - True
 - False

 True

3. Short answer: Assume we have data $X \in \mathbb{R}^{n \times d}$ with label $y \in \mathbb{R}^n$. If the underlying distribution of the data is $y = X\beta^* + \epsilon$, where $\epsilon \sim N(0, I)$. Assume the closed form solution $\hat{\beta}$ for mean squared error linear regression exists for this data, write out $\hat{\beta}$’s distribution:

 $$\hat{\beta} = (X^T X)^{-1} X^T y = (X^T X)^{-1} X^T (X\beta^* + \epsilon) = \beta^* + (X^T X)^{-1} X^T \epsilon \sim N(\beta^*, (X^T X)^{-1})$$

4. Consider linear regression on 1-dimensional data $x \in \mathbb{R}^n$ with label $y \in \mathbb{R}^n$. We apply linear regression in both directions on this data, i.e., we first fit y with x and get $y = \beta_1 x$ as the fitted line, then we fit x with y and get $x = \beta_2 y$ as the fitted line. Discuss the relations between β_1 and β_2:

 (i) True or False: The two fitted lines are always the same, i.e. we always have $\beta_2 = \frac{1}{\beta_1}$.
 - True
 - False

 False.

 (ii) Numerical answer: We further assume that $x^T y > 0$. What is the minimum value of $\frac{1}{\beta_1} + \frac{1}{\beta_2}$?

 []
5. Please circle True or False for the following questions, providing brief explanations to support your answer.

(i) **[3 pts]** Consider a linear regression model with only one parameter, the bias, i.e., \(y = \beta_0 \). Then given \(n \) data points \((x_i, y_i) \) (where \(x_i \) is the feature and \(y_i \) is the output), minimizing the sum of squared errors results in \(\beta_0 \) being the median of the \(y_i \) values.

Circle one: True False

Brief explanation:
False. \(\sum_{i=1}^{n} (y_i - \beta_0)^2 \) is the training cost, which when differentiated and set to zero gives \(\beta_0 = \frac{\sum_{i=1}^{n} y_i}{n} \), the mean of the \(y_i \) values.

(ii) **[3 pts]** Given data \(D = \{(x_1, y_1), \ldots, (x_n, y_n)\} \), we obtain \(\hat{w} \), the parameters that minimize the training error cost for the linear regression model \(y = w^T x \) we learn from \(D \).

Consider a new dataset \(D_{\text{new}} \) generated by duplicating the points in \(D \) and adding 10 points that lie along \(y = \hat{w}^T x \). Then the \(\hat{w}_{\text{new}} \) that we learn for \(y = w^T x \) from \(D_{\text{new}} \) is equal to \(\hat{w} \).

Circle one: True False

Brief explanation:
True. The new squared error can be written as \(2k + m \), where \(k \) is the old squared error. \(m = 0 \) for the 10 points that lie along the line, the lowest possible value for \(m \). And \(2k \) is least when \(k \) is least, which is when the parameters don’t change.

6. Given a set of training pairs \(\{(x_i, y_i), i = 1, \ldots, n\} \) where \(x_i \in \mathbb{R}^d \) is the input and \(y_i \in \mathbb{R} \) is the output, we want to find a linear function \(f(x) = w^T x \) that minimizes a tradeoff between training error and model complexity. The ridge regression formulation captures this tradeoff:

\[
\hat{w} = \arg \min_{w \in \mathbb{R}^d} J(w)
\]
\[
= \arg \min_{w \in \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{\lambda}{2} \sum_{i=1}^{d} w_i^2,
\]

where \(\lambda \geq 0 \). It is possible to derive a closed form expression for the parameter vector...
\(\hat{w} \) that minimizes this cost function. The gradient, using matrix notation, is

\[
\nabla J(w) = \begin{bmatrix}
\frac{\partial \ell(w)}{\partial w_1} \\
\vdots \\
\frac{\partial \ell(w)}{\partial w_d}
\end{bmatrix} = X^T X w - X^T y + \lambda w,
\]

where \(X \in \mathbb{R}^{n \times d} \) is the matrix with the the training input instances on the rows (\(x_i \) on row \(i \)), and \(y \in \mathbb{R}^n \) is the vector of training output instances.

(i) [2 pts.] What is the closed form expression for \(\hat{w} \) that we obtain by solving \(\nabla \ell(w) = 0 \)? Hint: use \(\lambda w = I w \lambda \), where \(I \) is the identity matrix.

\[
\nabla J(w) = 0 \implies \hat{w} = (X^T X + \lambda I)^{-1} X^T y.
\]

(ii) [3 pts.] What is the meaning of the \(\lambda \) parameter? What kind of tradeoff between training error and model complexity we have when \(\lambda \) approaches zero? What about when \(\lambda \) goes to infinity?

When \(\lambda \to 0 \), we prefer models that achieve the smallest possible training error, irrespective their complexity (squared \(\ell_2 \) norm). When \(\lambda \to +\infty \), we prefer models that are the simplest possible (i.e. that have small norm). We expect \(\hat{w} \) to approach the zero vector in this case.

(iii) [4 pts.] Answer true or false to each of the following questions and provide a brief justification for your answer:

- [1 pt.] T or F: In ridge regression, when solving for the linear regressor that minimizes the training cost function, it is always preferable to use the closed form expression rather than using an iterative method like gradient descent, even when the number of parameters is very high.

 False. Using the closed form expression to solve for \(\hat{w} \) requires \(O(d^3) \) operations (the cost of solving the linear system or computing the inverse), while using a gradient descent approach requires \(O(d^2) \) (the cost of matrix multiplication) per step. If the number of parameters is very high, it may not be computationally feasible to use the closed form expression. Also, if the required precision for the solution \(\hat{w} \) is moderate, as it is typically the case in machine learning applications, gradient descent may be preferable.

- [1 pt.] T or F: Using a non-linear feature map is never useful as all regression problems have linear input to output relations.

 False. We very rarely believe that the true regression function is linear in the initial input space. Many times, the choice of a linear model is done out of mathematical convenience.

- [1 pt.] T or F: In linear regression, minimizing a tradeoff between training error and model complexity, usually allows us to obtain a model with lower test error than just minimizing training error.

True. Not using regularization leads us to choose more complex models, which have higher variance. In practice it is typically better to optimize a tradeoff between data fitting and model complexity. This is especially true when the ratio between the size of the training set and the number of parameters is not very big.

- [1 pt.] **T or F:** When $\lambda = 0$, we recover ordinary least squares (OLS). If $n < d$, then X^TX does not have an inverse and the estimator \hat{w} is not well-defined.

True. This is a problem with the ordinary least squares estimator for the case where the number of parameters is bigger than the number of data points.

7. (a) Which of the following are valid expressions for the mean squared error objective function for linear regression with dataset $D = \{x^{(i)}, y^{(i)}\}_{i=1}^N$, with each $x^{(i)} \in \mathbb{R}^M$ and the design matrix $X \in \mathbb{R}^{N \times (M+1)}$. y and θ are column vectors.

Select all that apply:

- $J(\theta) = \frac{1}{N} \| y - \theta X \|^2$
- $J(\theta) = \frac{1}{N} \| y^T - \theta X \|^2$
- $J(\theta) = \frac{1}{N} \| y^T - X \theta \|^2$
- $J(\theta) = \frac{1}{N} \| X \theta - y \|^2$
- None of the Above

$J(\theta) = \frac{1}{N} \| X \theta - y \|^2$

(b) Your friend accidentally solved linear regression using the wrong objective function for mean squared error, specifically, they used the following objective function that contains two mistakes: 1) they forgot the $1/N$ and 2) they have one sign error.

$$J(w, b) = \sum_{i=1}^{N} \left(y^{(i)} - \left(\sum_{j=1}^{M} w_j x_j^{(i)} - b \right) \right)^2$$

You realize that you can still use the parameters that they learned, w and b, to correctly predict y given x.

Write the equation that implements this corrected prediction function $h(x, w, b)$ using your friend’s learned parameters, w and b. The w and x vectors are column vectors.

$$h(x, w, b) = w^T x - b$$

(c) We have 2 data points:

$$x^{(1)} = [2, 1]^T \quad y^{(1)} = 7$$
\(x^{(2)} = [1, 2]^T \quad y^{(2)} = 5 \)

We know that for linear regression with a bias/intercept term and mean squared error, there are infinite solutions with these two points.

Give a specific third point \(x^{(3)}, y^{(3)} \), such that, when included with the first two, will cause linear regression to still have infinite solutions. Your \(x^{(3)} \) should not equal \(x^{(1)} \) or \(x^{(2)} \) and your \(y^{(3)} \) should not equal \(y^{(1)} \) or \(y^{(2)} \).

\(x_1^{(3)} \)

\(x_2^{(3)} \)

\(y^{(3)} \)

Any \(x^{(3)} \) that is colinear with the first two \(x \)'s; \(y \) doesn’t matter.

After adding your third point, if we then double the output of just the first point such that now \(y^{(1)} = 14 \), will this change the number of solutions for linear regression?

\(\bigcirc \) Yes

\(\bigcirc \) No

No

8. Given that we have an input \(x \) and we want to estimate an output \(y \), in linear regression we assume the relationship between them is of the form \(y = wx + b + \epsilon \), where \(w \) and \(b \) are real-valued parameters we estimate and \(\epsilon \) represents the noise in the data. When the noise is Gaussian, maximizing the likelihood of a dataset \(S = \{ (x_1, y_1), \ldots, (x_n, y_n) \} \) to estimate the parameters \(w \) and \(b \) is equivalent to minimizing the squared error:

\[
\arg\min_w \sum_{i=1}^n (y_i - (wx_i + b))^2.
\]

Consider the dataset \(S \) plotted in Fig. 3 along with its associated regression line. For each of the altered data sets \(S^{\text{new}} \) plotted in Fig. 5, indicate which regression line (relative to the original one) in Fig. 4 corresponds to the regression line for the new data set. Write your answers in the table below.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dataset</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression line</td>
<td>(b)</td>
<td>(c)</td>
<td>(b)</td>
<td>(a)</td>
<td>(a)</td>
</tr>
</tbody>
</table>

Figure 3: An observed data set and its associated regression line.

(a) Old and new regression lines.
(b) Old and new regression lines.
(c) Old and new regression lines.

Figure 4: New regression lines for altered data sets S_{new}.
(a) Adding one outlier to the original data set.

(b) Adding two outliers to the original data set.

(c) Adding three outliers to the original data set. Two on one side and one on the other side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and adding four points that lie on the trajectory of the original regression line.

Figure 5: New data set S^{new}.
6 Optimization

1. **Select all that apply:** Which of the following are correct regarding Gradient Descent (GD) and stochastic gradient descent (SGD)

 - Each update step in SGD pushes the parameter vector closer to the parameter vector that minimizes the objective function.
 - The gradient computed in SGD is, in expectation, equal to the gradient computed in GD.
 - The gradient computed in GD has a higher variance than that computed in SGD, which is why in practice SGD converges faster in time than GD.

 B. A is incorrect, SGD updates are high in variance and may not go in the direction of the true gradient. C is incorrect, for the same reason. D is incorrect since they can converge if the function is convex, not just strongly convex.

2. (a) Determine if the following 1-D functions are convex. Assume that the domain of each function is \(\mathbb{R} \). The definition of a convex function is as follows:

 \[
 f(x) \text{ is convex } \iff f(\alpha x + (1 - \alpha) z) \leq \alpha f(x) + (1 - \alpha) f(z), \forall \alpha \in [0, 1] \text{ and } \forall x, z.
 \]

 Select all convex functions:

 - \(f(x) = x + b \) for any \(b \in \mathbb{R} \)
 - \(f(x) = c^2 x \) for any \(c \in \mathbb{R} \)
 - \(f(x) = ax^2 + b \) for any \(a \in \mathbb{R} \) and any \(b \in \mathbb{R} \)
 - \(f(x) = 0 \)
 - None of the Above

 \(f(x) = x + b \) for any \(b \in \mathbb{R} \), \(f(x) = c^2 x \) for any \(c \in \mathbb{R} \), \(f(x) = 0 \).

 (b) Consider the convex function \(f(z) = z^2 \). Let \(\alpha \) be our learning rate in gradient descent.

 For which values of \(\alpha \) will \(\lim_{t \to \infty} f(z^{(t)}) = 0 \), assuming the initial value of \(z \) is \(z^{(0)} = 1 \) and \(z^{(t)} \) is the value of \(z \) after the \(t \)-th iteration of gradient descent.

 Select all that apply:

 - \(\alpha = 0 \)
 - \(\alpha = \frac{1}{2} \)
 - \(\alpha = 1 \)
 - \(\alpha = 2 \)
\square \text{None of the Above}

\[\alpha = \frac{1}{2} \]

Give the range of all values for \(\alpha \geq 0 \) such that \(\lim_{t \to \infty} f(z^{(t)}) = 0 \), assuming the initial value of \(z \) is \(z^{(0)} = 1 \). Be specific.

\[(0, 1) \]