
Stochastic Gradient Descent
+

Probabilistic Learning
(Logistic Regression)

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 9

Sep. 23, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Q&A

2

Q: Why did we focus mostly on the Perceptron mistake

bound for linearly separable data; isn’t that an

unrealistic setting?

A: Not at all! Even if your data isn’t linearly separable to

begin with, we can often add features to make it so.

x1 x2 y

+1 +1 +

+1 -1 -

-1 +1 -

-1 -1 +

Exercise: Add

another feature to

transform this

nonlinearly separable

data into linearly

separable data.

Reminders
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Sep. 18
– Due: Wed, Sep. 25 at 11:59pm

• Midterm Exam 1
– Thu, Oct. 03, 6:30pm – 8:00pm

• Homework 4: Logistic Regression
– Out: Wed, Sep. 25
– Due: Fri, Oct. 11 at 11:59pm

• Today’s In-Class Poll
– http://p9.mlcourse.org

3

CONVEXITY

5

Convexity

6

Convexity

Convex Function

• Each local minimum is a
global minimum

Nonconvex Function

• A nonconvex function is not
convex

• Each local minimum is not
necessarily a global minimum 7

Convexity

10

Each local
minimum of a

convex function is
also a global

minimum.

A strictly convex
function has a
unique global

minimum.

Convexity

11

The Mean Squared Error function,
which we minimize for learning

the parameters of Linear
Regression, is convex!

Answer:

Solving Linear Regression

13

Question:

GRADIENT DESCENT

17

Computational Complexity of OLS:

Motivation: Gradient Descent

18

To solve the Ordinary Least Squares
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M

Motivation: Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form

solution?
2. What if we can, but it’s inefficient to

compute?
3. What if we can, but it’s numerically

unstable to compute?

19

20

Topographical Maps

21

Topographical Maps

Gradients

22

Gradients

23
These are the gradients that

Gradient Ascent would follow.

(Negative) Gradients

24
These are the negative gradients that

Gradient Descent would follow.

(Negative) Gradient Paths

25

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.

Pros and cons of gradient descent
• Simple and often quite effective on ML tasks
• Often very scalable
• Only applies to smooth functions (differentiable)
• Might find a local minimum, rather than a global one

26
Slide courtesy of William Cohen

Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line

search

27

Gradient Descent

28

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M

Gradient Descent

29

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

—

STOCHASTIC GRADIENT DESCENT

32

Gradient Descent

33

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

M

Stochastic Gradient Descent (SGD)

34

We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Stochastic Gradient Descent (SGD)

35

We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Stochastic Gradient Descent (SGD)

36

We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

In practice, it is common
to implement SGD using

sampling without
replacement (i.e.

shuffle({1,2,…N}), even
though most of the

theory is for sampling
with replacement (i.e.

Uniform({1,2,…N}).

Convergence Curves

• SGD reduces MSE
much more rapidly
than GD

• For GD / SGD, training
MSE is initially large
due to uninformed
initialization

37

Gradient Descent
SGD

Closed-form
(normal eq.s)

Figure adapted from Eric P. Xing

• Def: an epoch is a
single pass through
the training data

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

38

Expectations of Gradients

39

Convergence of Optimizers

40

Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to

optimize a function
• Apply knowledge of zero derivatives to identify

a closed-form solution (if one exists) to an
optimization problem

• Distinguish between convex, concave, and
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice)
differentiable function

45

PROBABILISTIC LEARNING

46

Probabilistic Learning

Function Approximation
Previously, we assumed that our
output was generated using a
deterministic target function:

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning
Today, we assume that our
output is sampled from a
conditional probability
distribution:

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)

47

Robotic Farming

48

Deterministic Probabilistic

Classification
(binary output)

Is this a picture of
a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous
output)

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

Bayes Optimal Classifier

Whiteboard
– Bayes Optimal Classifier
– Reducible / irreducible error
– Ex: Bayes Optimal Classifier for 0/1 Loss

49

Maximum Likelihood Estimation

50

Learning from Data (Frequentist)

Whiteboard
– Principle of Maximum Likelihood Estimation

(MLE)
– Strawmen:
• Example: Bernoulli
• Example: Gaussian
• Example: Conditional #1

(Bernoulli conditioned on Gaussian)
• Example: Conditional #2

(Gaussians conditioned on Bernoulli)

51

MOTIVATION:
LOGISTIC REGRESSION

53

Example: Image Classification
• ImageNet LSVRC-2010 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

56

57

58

59

Example: Image Classification

60

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

61

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

LOGISTIC REGRESSION

62

Logistic Regression

63

We are back to
classification.

Despite the name
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h() = sign(�T)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Recall…

Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1):

w

Hyperplane (Definition 2):

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

Recall…

Using gradient ascent for linear
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn

parameters
4. Predict the class with highest probability under

the model

66

