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Q&A
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Q: Why did we focus mostly on the Perceptron mistake 

bound for linearly separable data; isn’t that an 

unrealistic setting?

A: Not at all! Even if your data isn’t linearly separable to 

begin with, we can often add features to make it so.

x1 x2 y
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+1 -1 -

-1 +1 -

-1 -1 +

Exercise: Add 

another feature to 

transform this 

nonlinearly separable 

data into linearly 

separable data.



Reminders
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Sep. 18
– Due: Wed, Sep. 25 at 11:59pm

• Midterm Exam 1
– Thu, Oct. 03, 6:30pm – 8:00pm

• Homework 4: Logistic Regression
– Out: Wed, Sep. 25
– Due: Fri, Oct. 11 at 11:59pm

• Today’s In-Class Poll
– http://p9.mlcourse.org
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CONVEXITY
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Convexity
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Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 7



Convexity
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Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



Convexity
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The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!



Answer:

Solving Linear Regression
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Question:



GRADIENT DESCENT
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Computational Complexity of OLS:

Motivation: Gradient Descent
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To solve the Ordinary Least Squares 
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M



Motivation: Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form 

solution?
2. What if we can, but it’s inefficient to 

compute?
3. What if we can, but it’s numerically 

unstable to compute?
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Topographical Maps
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Topographical Maps



Gradients
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Gradients

23
These are the gradients that 

Gradient Ascent would follow.



(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.



(Negative) Gradient Paths
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Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.



Pros and cons of gradient descent
• Simple and often quite effective on ML tasks
• Often very scalable 
• Only applies to smooth functions (differentiable)
• Might find a local minimum, rather than a global one
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Slide courtesy of William Cohen



Gradient Descent

Chalkboard
– Gradient Descent Algorithm
– Details: starting point, stopping criterion, line 

search
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N
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����
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

M



Stochastic Gradient Descent (SGD)
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We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Stochastic Gradient Descent (SGD)
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We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Stochastic Gradient Descent (SGD)
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We need a per-example objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).



Convergence Curves

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization
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Gradient Descent
SGD

Closed-form 
(normal eq.s)

Figure adapted from Eric P. Xing

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 



38



Expectations of Gradients
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Convergence of Optimizers
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Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to 

optimize a function
• Apply knowledge of zero derivatives to identify 

a closed-form solution (if one exists) to an 
optimization problem

• Distinguish between convex, concave, and 
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice) 
differentiable function
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PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming
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Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



Bayes Optimal Classifier

Whiteboard
– Bayes Optimal Classifier
– Reducible / irreducible error
– Ex: Bayes Optimal Classifier for 0/1 Loss
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Maximum Likelihood Estimation
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Learning from Data (Frequentist)

Whiteboard
– Principle of Maximum Likelihood Estimation 

(MLE)
– Strawmen:
• Example: Bernoulli
• Example: Gaussian
• Example: Conditional #1 

(Bernoulli conditioned on Gaussian)
• Example: Conditional #2

(Gaussians conditioned on Bernoulli)
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MOTIVATION: 
LOGISTIC REGRESSION
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Example: Image Classification
• ImageNet LSVRC-2010 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax
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CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax

This “softmax” 
layer is Logistic 

Regression!

The rest is just
some fancy 

feature extraction 
(discussed later in 

the course)



LOGISTIC REGRESSION
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Logistic Regression
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We are back to 
classification.

Despite the name 
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h( ) = sign(�T )

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines

Recall…



Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1): 

w

Hyperplane (Definition 2): 

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

Recall…



Using gradient ascent for linear 
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn 

parameters
4. Predict the class with highest probability under 

the model
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