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Welcome Micah!!




Learning Paradigms

Paradigm Data

Supervised D={x"¢y@IN  x~p*(-)andy = c*(-)
— Regression y® € R

< Classification y@ e {1,...,K}

— Binary classification y® e {+1,-1}

< Structured Prediction y(®) is a vector

Unsupervised D={xW}¥ = x~p()

— Clustering predict {z(W}¥  where 2(V) ¢ {1,..., K}

— — Dimensionality Reduction  convert eachx¥) € R™ tou € R¥ with K << M
Semi-supervised D = {x®,y®}" U {xD}2, S
Online D = {(xM), V), (x®, @), (x® y®). .}

Active Learning D = {x("}¥ | and can query (¥ = ¢*(-) at a cost
Imitation Learning D = {(sM,aM), (5, a@),..}

Reinforcement Learning D = {(sW,aM), r)) (52 a2 r@) 1



PCA Outline

* Dimensionality Reduction
— High-dimensional data
— Learning (low dimensional) representations

* Principal Component Analysis (PCA)
— Examples: 2D and 3D
— Data for PCA
— PCA Definition
— Objective functions for PCA
— PCA, Eigenvectors, and Eigenvalues
— Algorithms for finding Eigenvectors [ Eigenvalues

* PCA Examples

— Image Compression
— MRI Image Reconstruction



DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)




Data

Imension

High D

imensional data:

Examples of high d

— Multilingual News Stories
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Subject Object

Image from (Wehbe et al., 2014)

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



Learning Representations

PCA, Kernel PCA, ICA: Powerful unsupervised learning techniques
for extracting hidden (potentially lower dimensional) structure
from high dimensional datasets. 7,656 3p 7O 50 s0 768

™~ ‘rlﬂuv

Useful for: - q

* Visualization 1 |

™ ..
* ~ More efficient use of resources
(e.g., time, memory, communication)

* Statistical: fewer dimensions = better generalization

* Noise removal (improving data quality)

* Further processing by machine learning algorithms

Slide from Nina Balcan



PRINCIPAL COMPONENT
ANALYSIS (PCA)



Principal Component Analysis (PCA)

4V

In case where data lies on or near a low d-dimensional linear subspace,
axes of this subspace are an effective representation of the data.

|dentifying the axes is known as Principal Components Analysis, and can be

obtained by using classic matrix computation tools (Eigen or Singular Value
Decomposition).

Slide from Nina Balcan



2D Gaussian dataset

Slide from Barnabas Poczos



1st PCA axis

Slide from Barnabas Poczos



2nd PCA axis

Slide from Barnabas Poczos



Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy
H. Potter, H.S.S.

imagination at work 16
GLBC — MSK Image Analysis

April 23,2010




Growth Plate Imaging
Growth Plate Disruption and Limb Length Discrepancy

8 year-old boy with previous fracture and
4cm leg length discrepancy

Images Courtesy
H. Potter, H.S.S.

imagination at work 17
GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

imagination at work 18
¢ GLBC — MSK Image Analysis

April 23,2010



Growth Plate Imaging

Area Measurement

Flatten Growth Plate to Enable 2D Area Measurement

imagination at work 19
GLBC — MSK Image Analysis

April 23,2010



Data for PCA

D= {X(i)}rfil

X =

—
(x(2)T

()T

: .
We assume the data is centered |, ~

|
o — E () —
= '_1X =0

Q: What if
your data is
not centered?

A: Subtract

off the
sample mean




Sample Covariance Matrix

The sample covariance matrix is given by:

ik = ~ 2@} &) (@) om0
=TT

Since the data matrix is centered, we rewrite as:

| B (X(l))T 7
»=_XTX (x=)T

N X =
J

()T



Projections

Quiz: What is the projection of point x onto
vector v, assuming that [|v|[, = 12

A

B vix = b Xz

T P4
C (VIx)v=c X e
o -
D vixxTv "
N
b C




Principal Component Analysis (PCA)

Whiteboard
— PCA Sketch
— Objective functions for PCA



Maximizing the Variance

Quiz: Consider the two projections below
2.  Which maximizes the variance?
3.  Which minimizes the reconstruction error?

Option A Option B c:l\ 3\

/

24
Slide from Matt Gormley



Principal Component Analysis (PCA)

Whiteboard

— PCA, Eigenvectors, and Eigenvalues

— Algorithms for finding Eigenvectors |
Eigenvalues



PCA

Equivalence of Maximizing Variance and Minimizing Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
1x = (vIx )| = ||x@|? = (vIx)? (1)

since viv = Hv||2 =1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

v = argmin G Z @ — (v"xO)v] e)
= argmin e i |[x(D]|2 — (vIx(9))? (3)
vilvl2=1 IV
_ 1T (02
— jl|‘|%1|1|12a:}(1 ~ ;(v x\*) (4)

(5)

26



PCA: the First Principal Component

To find the first principal component, we wish to solve the fol-
lowing constrained optimization problem (variance minimization).

vi = argmax v %v (1)
vi|[v][2=1

So we turn to the method of Lagrange multipliers. The Lagrangian
is:

LvV,\)=vIZv-Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to zero gives:

% (VTEV —Avlv - 1)) =0 (3)
Yv—Av=0 (4)
Yv=J\v (5)

Recall: For a square matrix A, the vector v is an eigenvector iff
there exists eigenvalue )\ such that:

Av =)\v (6)



SVD for PCA

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV”T (1)

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we obtain an SVD of our data matrix X, so that:
X = UAVT (1)

Now consider what happens when we rewrite ¥ = %XTX terms
of this SVD.

1 T
® = XX )

1 T\T T

= (UAVTYT(UAVT) 3)

= H(VATUT)(UAV?) (a)
1 T T

= SVATAV (5)
1 27T

= SV(A)PV (6)

Above we used the fact that UTU = I since U is orthogonal by
definition.

We find that (A)? is a diag-
onal matrix whose entries are
A;; = \? the squares of the
eigenvalues of the SVD of X.
Further, both X and XTX
share the same eigenvectors
in their SVD.

Thus, we can run SVD on X
without everinstantiating the
large X7'X to obtain the nec-
essary principal components
more efficiently.



Principal Component Analysis (PCA)



Principal Component Analysis (PCA)

(XTX )v = Av, so v (the first PC) is the eigenvector of
sample correlatlon/covarlance matrix XX

Sample variance of projection v X' X v = Aviv = 4

~ S

.

Thus, the eigenvalue 4 denotes the amount of variability

captured along that dimension (aka amount of energy along
that dimension).

Eigenvalues /11 = /12 = Ag >
* The 15t PC v, is the the eigenvector of the sample covariance

matrixX " X associated with the largest eigenvalue

* The 2nd PC v, is the the eigenvector of the sample covariance
matrixX” X associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M PCs.

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 - Variance (%) = ratio of variance along
- given principal component to total
20 - variance of all principal components
:\o\ _
~~ 15 -
[<B] —
(&)
c
8
= 10 -
> —
5 -
Jd 0 H A A A e mmme

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose
much

— M dimensions in original data

— calculate M eigenvectors and eigenvalues

— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011
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PCA EXAMPLES



Projecting MNIST digits

Task Setting:

1. Take 28x28 images of digits and project them down to K components

2. Report percent of variance explained for K components

3. Then project back up to 28x28 image to visualize how much information was preserved

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 0 0

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components

Original Image 95% of Explained Variance 90% of Explained Variance 80% of Explained Variance 50% of Explained Variance
0 0 [ 0

0 5 10 15 20 25 0 5 10 15 20 25

784 components 154 components 87 components 43 components 11 components

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

34



Projecting MNIST digits

Task Setting:
1.  Take 28x28 images of digits and project them down to 2 components
2. Plot the 2 dimensional points
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MRI Image Reconstruction

36



MRI Image Reconstruction

Lots of redundant structure at patch level

Heart MR Image: Akcakaya, et al, BM3D (2011)

37



MRI Image Reconstruction

* Image Denoising

v,




MRI Image Reconstruction

Quiz: If | have a 10x10 patch from a noisy
image, which number of principal components
kept will allow more noise in the resulting
patch?

A. 100
B. 10



Learning Objectives

Dimensionality Reduction /| PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

|dentify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



