
Support Vector Machines
+

Kernels

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 27

Nov. 22, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: HMMs
– Out: Fri, Nov. 8
– Due: Mon, Nov. 25 at 11:59pm

• Homework 8: Learning Paradigms
– Out: Mon, Nov. 25
– Due: Wed, Dec. 4 at 11:59pm
– Can only be submitted up to 3 days late,

so we can return grades before final exam

• Today’s In-Class Poll
– http://p27.mlcourse.org

2

CONSTRAINED OPTIMIZATION

7

Constrained Optimization

8

SVM: Optimization Background

Whiteboard
– Constrained Optimization
– Linear programming
– Quadratic programming
– Example: 2D quadratic function with linear

constraints

9

Quadratic Program

10

Quadratic Program

11

Quadratic Program

12

Quadratic Program

13

Quadratic Program

14

SUPPORT VECTOR MACHINE
(SVM)

15

Example: Building a Canal

16https://www.flickr.com/photos/hereistom/10438848375

https://www.flickr.com/photos/hereistom/10438848375

SVM

Whiteboard
– SVM Primal (Linearly Separable Case)

17This section borrows ideas from Nina Balcan’s SVM lectures at CMU and Patrick Winston’s

“widest street” SVM lecture at MIT (https://www.youtube.com/watch?v=_PwhiWxHK8o).

https://www.youtube.com/watch?v=_PwhiWxHK8o

SVM QP

18

SVM QP

19

SVM QP

20

SVM QP

21

SVM QP

22

SVM QP

23

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

24

• Instead of minimizing the primal, we can maximize the
dual problem

• For the SVM, these two problems give the same
answer (i.e. the minimum of one is the maximum of the
other)

• Definition: support vectors are those points x(i) for
which α(i) ≠ 0

METHOD OF LAGRANGE
MULTIPLIERS

25

Method of Lagrange Multipliers

26

Method of Lagrange Multipliers

27

Method of Lagrange Multipliers

28

Method of Lagrange Multipliers

29

Method of Lagrange Multipliers

30

Method of Lagrange Multipliers

31

Method of Lagrange Multipliers

32Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx

Method of Lagrange Multipliers

33Figure from http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.aspx

SVM DUAL

34

Method of Lagrange Multipliers

Whiteboard
– Lagrangian Duality
– Example: SVM Dual

35This section borrows ideas from Nina Balcan’s SVM lectures at CMU and Patrick Winston’s
“widest street” SVM lecture at MIT (https://www.youtube.com/watch?v=_PwhiWxHK8o).

https://www.youtube.com/watch?v=_PwhiWxHK8o

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

Support Vector Machines (SVMs)

37

• Instead of minimizing the primal, we can maximize the
dual problem

• For the SVM, these two problems give the same
answer (i.e. the minimum of one is the maximum of the
other)

• Definition: support vectors are those points x(i) for
which α(i) ≠ 0

SVM EXTENSIONS

38

Soft-Margin SVM

39

Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

• Question: If the dataset is
not linearly separable, can
we still use an SVM?

• Answer: Not the hard-
margin version. It will never
find a feasible solution.

In the soft-margin version,
we add “slack variables”
that allow some points to
violate the large-margin
constraints.

The constant C dictates
how large we should allow
the slack variables to be

Soft-Margin SVM

40

Hard-margin SVM (Primal)

Soft-margin SVM (Primal)

Hard-margin SVM (Primal)

Soft-margin SVM (Primal) Soft-margin SVM (Lagrangian Dual)

Hard-margin SVM (Lagrangian Dual)

Soft-Margin SVM

41
We can also work with the dual of the soft-margin SVM

Multiclass SVMs
The SVM is inherently a binary classification method,
but can be extended to handle K-class classification in
many ways.
1. one-vs-rest:
– build K binary classifiers
– train the kth classifier to predict whether an instance

has label k or something else
– predict the class with largest score

2. one-vs-one:
– build (K choose 2) binary classifiers
– train one classifier for distinguishing between each pair

of labels
– predict the class with the most “votes” from any given

classifier

42

Learning Objectives

Support Vector Machines
You should be able to…
1. Motivate the learning of a decision boundary with large margin

2. Compare the decision boundary learned by SVM with that of

Perceptron

3. Distinguish unconstrained and constrained optimization

4. Compare linear and quadratic mathematical programs

5. Derive the hard-margin SVM primal formulation

6. Derive the Lagrangian dual for a hard-margin SVM

7. Describe the mathematical properties of support vectors and provide

an intuitive explanation of their role

8. Draw a picture of the weight vector, bias, decision boundary, training

examples, support vectors, and margin of an SVM

9. Employ slack variables to obtain the soft-margin SVM

10. Implement an SVM learner using a black-box quadratic programming

(QP) solver

49

KERNELS

50

Kernels: Motivation

Most real-world problems exhibit data that is
not linearly separable.

51

Q: When your data is not linearly separable,
how can you still use a linear classifier?

A: Preprocess the data to produce nonlinear
features

Example: pixel representation for Facial Recognition:

Kernels: Motivation

• Motivation #1: Inefficient Features
– Non-linearly separable data requires high

dimensional representation
– Might be prohibitively expensive to compute or

store

• Motivation #2: Memory-based Methods
– k-Nearest Neighbors (KNN) for facial recognition

allows a distance metric between images -- no
need to worry about linearity restriction at all

52

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

54

Hard-margin SVM (Primal) Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

55

• Suppose we do some
feature engineering

• Our feature function is ɸ
• We apply ɸ to each input

vector x

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

56

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

Hard-margin SVM (Lagrangian Dual)

SVM: Kernel Trick

57

We could replace the dot product of the two feature vectors
in the transformed space with a function k(x,z)

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

58

Kernel Methods

59

Q: These are just non-linear features, right?
A: Yes, but…

Q: Can’t we just compute the feature
transformation φ explicitly?

A: That depends...

Q: So, why all the hype about the kernel trick?
A: Because the explicit features might either

be prohibitively expensive to compute or
infinite length vectors

Example: Polynomial Kernel

60
Slide from Nina Balcan

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space
Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

Example

For n=2, d=2, the kernel K x, z = x ⋅ z d corresponds to

𝑥1, 𝑥2 → Φ 𝑥 = (𝑥12, 𝑥22, 2𝑥1𝑥2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z)

Example
ϕ:R2 → R3, x1, x2 → Φ x = (x12, x22, 2x1x2)

x2

x1

O
O O

O
O

O
O O

X
X

X

X

X
X

X

X X

X

X

X

X

X
X

X

X
X

z1

z3

O
O

O O

O

O

O

O O

X X
X X

X

X

X

X X

X

X

X

X

X

X

X X

X

Φ-space Original space

ϕ x ⋅ ϕ 𝑧 = x12, x22, 2x1x2 ⋅ (𝑧12, 𝑧22, 2𝑧1𝑧2)

= x1𝑧1 + x2𝑧2 2 = x ⋅ 𝑧 2 = K(x, z)

Kernel Examples

63

Name Kernel Function
(implicit dot product)

Feature Space
(explicit dot product)

Linear Same as original input
space

Polynomial (v1) All polynomials of degree
d

Polynomial (v2) All polynomials up to
degree d

Gaussian Infinite dimensional space

Hyperbolic
Tangent
(Sigmoid)
Kernel

(With SVM, this is
equivalent to a 2-layer
neural network)

RBF Kernel Example

64
RBF Kernel:

RBF Kernel Example

65
RBF Kernel:

RBF Kernel Example

66
RBF Kernel:

RBF Kernel Example

67
RBF Kernel:

RBF Kernel Example

68
RBF Kernel:

RBF Kernel Example

69
RBF Kernel:

RBF Kernel Example

70
RBF Kernel:

RBF Kernel Example

71
RBF Kernel:

RBF Kernel Example

72
RBF Kernel:

RBF Kernel Example

73
RBF Kernel:

RBF Kernel Example

74
RBF Kernel:

RBF Kernel Example

75
RBF Kernel:

RBF Kernel Example

76
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

77
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

78
RBF Kernel:

KNN vs. SVM

RBF Kernel Example

79
RBF Kernel:

KNN vs. SVM

Kernel Methods
• Key idea:

1. Rewrite the algorithm so that we only work with dot products xTz
of feature vectors

2. Replace the dot products xTz with a kernel function k(x, z)

• The kernel k(x,z) can be any legal definition of a dot product:

k(x, z) = φ(x) Tφ(z) for any function φ: X à RD

So we only compute the φ dot product implicitly

• This “kernel trick” can be applied to many algorithms:
– classification: perceptron, SVM, …
– regression: ridge regression, …
– clustering: k-means, …

80

SVM + Kernels: Takeaways
• Maximizing the margin of a linear separator is a good

training criteria
• Support Vector Machines (SVMs) learn a max-margin

linear classifier
• The SVM optimization problem can be solved with

black-box Quadratic Programming (QP) solvers
• Learned decision boundary is defined by its support

vectors
• Kernel methods allow us to work in a transformed

feature space without explicitly representing that
space

• The kernel-trick can be applied to SVMs, as well as
many other algorithms

83

Learning Objectives
Kernels

You should be able to…
1. Employ the kernel trick in common learning

algorithms
2. Explain why the use of a kernel produces only

an implicit representation of the transformed
feature space

3. Use the "kernel trick" to obtain a
computational complexity advantage over
explicit feature transformation

4. Sketch the decision boundaries of a linear
classifier with an RBF kernel

84

