

10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: Value Iteration & Policy Iteration

Matt Gormley Lecture 16 Oct. 16, 2019

Reminders

- Homework 5: Neural Networks
 - Out: Fri, Oct. 11
 - Due: Fri, Oct. 25 at 11:59pm
- Recitation:
 - Thu, Oct 17th at 7:30pm 8:30pm in GHC 4401
 - (also available on Panopto)

- Today's In-Class Poll
 - http://p16.mlcourse.org

Q&A

MARKOV DECISION PROCESSES

Markov Decision Process

 For supervised learning the PAC learning framework provided assumptions about where our data came from:

$$\mathbf{x} \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

 For reinforcement learning we assume our data comes from a Markov decision process (MDP)

Markov Decision Process

- Components: states, actions, state transition probabilities, reward function
- Markovian assumption
- MDP Model
- MDP Goal: Infinite-horizon Discounted Reward
- deterministic vs. nondeterministic MDP
- deterministic vs. stochastic policy

Exploration vs. Exploitation

- Explore vs. Exploit Tradeoff
- Ex: k-Armed Bandits
- Ex: Traversing a Maze

FIXED POINT ITERATION

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.

$$J(\boldsymbol{\theta})$$

$$\frac{dJ(\boldsymbol{\theta})}{d\theta_i} = 0 = f(\boldsymbol{\theta})$$

$$0 = f(\boldsymbol{\theta}) \Rightarrow \theta_i = g(\boldsymbol{\theta})$$

$$\theta_i^{(t+1)} = g(\boldsymbol{\theta}^{(t)})$$

. Given objective function:

Compute derivative, set to zero (call this function f).

 Rearrange the equation s.t. one of parameters appears on the LHS.

4. Initialize the parameters.

For i in $\{1,...,K\}$, update each parameter and increment t:

6. Repeat #5 until convergence

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

Given objective function:

Compute derivative, set to zero (call this function f).

Rearrange the equation s.t. one of parameters appears on the LHS.

4. Initialize the parameters.

For i in $\{1,...,K\}$, update each parameter and increment t:

6. Repeat #5 until convergence

We can implement our example in a few lines of python.

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \neq \frac{x^2 + 2}{3}$$

```
def f1(x):
    '''f(x) = x^2 - 3x + 2'''
    return x^{**2} - 3.*x + 2.
def g1(x):
    '''g(x) = \frac{x^2 + 2}{3}'''
    return (x**2 + 2.) / 3.
def fpi(g, x0, n, f):
    '''Optimizes the 1D function g by fixed point iteration
    starting at x0 and stopping after n iterations. Also
    includes an auxiliary function f to test at each value.'''
    x = x0
    for i in range(n):
        print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
        x = g(x)
    i += 1
    print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
    return x
if __name__ == "__main__":
    x = fpi(g1, 0, 20, f1)
```

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

```
$ python fixed-point-iteration.py
i = 0 x = 0.0000 f(x) = 2.0000
i = 1 \times -0.6667 f(x) = 0.4444
i = 2 \times 0.8148 f(x) = 0.2195
i = 3 \times -0.8880 f(x) = 0.1246
i = 4 \times -0.9295 f(x) = 0.0755
i = 5 \times 0.9547 f(x) = 0.0474
i = 6 \times 0.9705 f(x) = 0.0304
i = 7 \times 0.9806 f(x) = 0.0198
i = 8 \times 0.9872 f(x) = 0.0130
i = 9 \times -0.9915 f(x) = 0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 \times -0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 \times =0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 \times -0.9998 f(x)=0.0002
i=19 \times -0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001
```

VALUE ITERATION

Definitions for Value Iteration

- State trajectory
- Value function
- Bellman equations
- Optimal policy
- Optimal value function
- Computing the optimal policy
- Ex: Path Planning

RL Terminology

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

Terms:

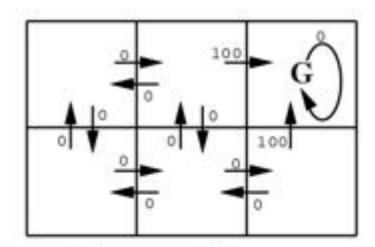
- A. a reward function
- B. a transition probability
- C. a policy
- D. state/action/reward triples
- E. a value function
- F. transition function
- G. an optimal policy
- H. Matt's favorite statement

Statements:

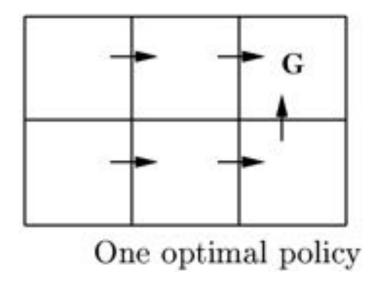
- gives the expected future discounted reward of a state
- 2. maps from states to actions
- quantifies immediate success of agent
- 4. is a deterministic map from state/action pairs to states
- 5. quantifies the likelihood of landing a new state, given a state/action pair
- is the desired output of an RL algorithm
- 7. can be influenced by trading off between exploitation/exploration

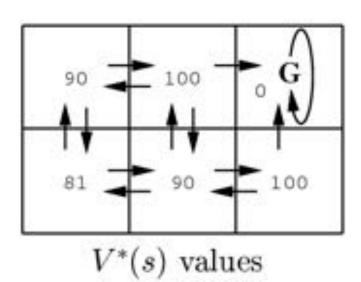
Example: Path Planning

Example: Robot Localization



r(s, a) (immediate reward) values





Value Iteration

- Value Iteration Algorithm
- Synchronous vs. Asychronous Updates