
Reinforcement Learning: 
Markov Decision Processes

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 15

Oct.14, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 5: Neural Networks
– Out: Fri, Oct. 11

– Due: Fri, Oct. 25 at 11:59pm 

• Recitation: 

– Thu, Oct 17th at 7:30pm – 8:30pm in GHC 4401 

– (also available on Panopto)

• Today’s In-Class Poll
– http://p15.mlcourse.org
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Q&A
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OTHER APPROACHES TO 
DIFFERENTIATION
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Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon
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Symbolic Differentiation
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A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]

E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Symbolic Differentiation

Differentiation Quiz #2:
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Summary
1. Neural Networks…
– provide a way of learning features
– are highly nonlinear prediction functions
– (can be) a highly parallel network of logistic 

regression classifiers
– discover useful hidden representations of the 

input
2. Backpropagation…
– provides an efficient way to compute gradients
– is a special case of reverse-mode automatic 

differentiation
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Backprop Objectives
You should be able to…
• Construct a computation graph for a function as specified by an 

algorithm
• Carry out the backpropagation on an arbitrary computation graph
• Construct a computation graph for a neural network, identifying all the 

given and intermediate quantities that are relevant
• Instantiate the backpropagation algorithm for a neural network
• Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. 

L2) when the parameters of a model are comprised of several matrices 
corresponding to different layers of a neural network

• Apply the empirical risk minimization framework to learn a neural 
network

• Use the finite difference method to evaluate the gradient of a function
• Identify when the gradient of a function can be computed at all and 

when it can be computed efficiently
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LEARNING PARADIGMS
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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Learning Paradigms
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REINFORCEMENT LEARNING
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Examples of Reinforcement Learning 

• How should a robot behave so as 

to optimize its “performance”? 
(Robotics)

• How to automate the motion of 

a helicopter? (Control Theory)

• How to make a good chess-playing 

program? (Artificial Intelligence)
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Autonomous Helicopter

Video:
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https://www.youtube.com/watch?v=VCdxqn0fcnE

https://www.youtube.com/watch?v=VCdxqn0fcnE


Robot in a room

• what’s the strategy to achieve max reward?
• what if the actions were NOT deterministic?
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History of Reinforcement Learning

• Roots in the psychology of animal learning
(Thorndike,1911).

• Another independent thread was the problem of 
optimal control, and its solution using dynamic 
programming (Bellman, 1957).

• Idea of temporal difference learning (on-line 
method), e.g., playing board games (Samuel, 1959).

• A major breakthrough was the discovery of Q-
learning (Watkins, 1989).
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What is special about RL?
• RL is learning how to map states to actions, so 

as to maximize a numerical reward over time.

• Unlike other forms of learning, it is a multistage 
decision-making process (often Markovian).

• An RL agent must learn by trial-and-error. (Not 
entirely supervised, but interactive)

• Actions may affect not only the immediate 
reward but also subsequent rewards (Delayed 
effect). 
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Elements of RL

• A policy

- A map from state space to action space.

- May be stochastic.

• A reward function

- It maps each state (or, state-action pair) to

a real number, called reward. 

• A value function

- Value of a state (or, state-action pair) is the

total expected reward, starting from that 

state (or, state-action pair).
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Policy
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Reward for each step -2
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Reward for each step: -0.1
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The Precise Goal
• To find a policy that maximizes the Value function.
– transitions and rewards usually not available

• There are different approaches to achieve this goal in 
various situations.

• Value iteration and Policy iteration are two more 
classic approaches to this problem. But essentially 
both are dynamic programming.

• Q-learning is a more recent approaches to this 
problem. Essentially it is a temporal-difference 
method.
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MARKOV DECISION PROCESSES
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Markov Decision Process

• For supervised learning the PAC learning 
framework provided assumptions about 
where our data came from:

• For reinforcement learning we assume our 
data comes from a Markov decision process 
(MDP)
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Markov Decision Process

Whiteboard
– Components: states, actions, state transition 

probabilities, reward function
– Markovian assumption
– MDP Model
– MDP Goal: Infinite-horizon Discounted Reward
– deterministic vs. nondeterministic MDP
– deterministic vs. stochastic policy
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