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Reminders

• Homework 4: Logistic Regression

– Out: Wed, Sep. 25

– Due: Fri, Oct. 11 at 11:59pm

• Homework 5: Neural Networks

– Out: Fri, Oct. 11

– Due: Fri, Oct. 25 at 11:59pm

• Today’s In-Class Poll

– http://p13.mlcourse.org
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Q&A
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Q: What is mini-batch SGD?

A: A variant of SGD…



Mini-Batch SGD

• Gradient Descent: 
Compute true gradient exactly from all N 
examples

• Mini-Batch SGD: 
Approximate true gradient by the average 
gradient of K randomly chosen examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient 
of one randomly chosen example
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Mini-Batch SGD
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Three variants of first-order optimization:



NEURAL NETWORKS
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Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network
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Neural Network Parameters
Question:
Suppose you are training a 
one-hidden layer neural 
network with sigmoid 
activations for binary 
classification.

True or False: There is a 
unique set of parameters 
that maximize the 
likelihood of the dataset 
above.
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Answer:



ARCHITECTURES
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Neural Network Architectures

Even for a basic Neural Network, there are 
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)
4. Form of objective function
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Building a Neural Net
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…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?
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Output

Input

Hidden Layer
D = M
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Building a Neural Net
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…

…

Output

Input

Hidden Layer
D < M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?



Building a Neural Net
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…

…

Output

Input

Hidden Layer
D > M

What method(s) is 
this setting similar to?

Q: How many hidden units, D, should we use?



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?



Deeper Networks
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…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?



Q: How many layers should we use?

Deeper Networks
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…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Deeper Networks
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…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function 
approximator

– Cybenko (1989): For any continuous function g(x), there 
exists a 1-hidden-layer neural net hθ(x) 
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation 
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers) 

are too hard to train”

– After 2006: “Deep networks are easier to train than shallow 
networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.



Different Levels of Abstraction

• We don’t know 
the “right” 
levels of 
abstraction

• So let the model 
figure it out!

24
Example from Honglak Lee (NIPS 2010)



Different Levels of Abstraction

Face Recognition:
– Deep Network 

can build up 
increasingly 
higher levels of 
abstraction

– Lines, parts, 
regions
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Example from Honglak Lee (NIPS 2010)



Different Levels of Abstraction
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Example from Honglak Lee (NIPS 2010)

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3



Activation Functions
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…

…

Output

Input

Hidden Layer

Neural Network with sigmoid 
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions
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…

…

Output

Input

Hidden Layer

Neural Network with arbitrary 
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Activation Functions

So far, we’ve 
assumed that the 
activation function 
(nonlinearity) is 
always the sigmoid 
function…
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Sigmoid / Logistic Function

logistic(u) ≡ 1
1+ e−u



Activation Functions

• A new change: modifying the nonlinearity
– The logistic is not widely used in modern ANNs

Alternate 1: 
tanh

Like logistic function but 
shifted to range [-1, +1]

Slide from William Cohen



AI Stats 2010

sigmoid 
vs. 
tanh

depth 4?

Figure from Glorot & Bentio (2010)



Activation Functions

• A new change: modifying the nonlinearity
– reLU often used in vision tasks

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient 
when you pass zero)

Slide from William Cohen



Activation Functions

• A new change: modifying the nonlinearity
– reLU often used in vision tasks

Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient 

Slide from William Cohen



Neural Network
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Decision 
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification



Neural Network
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Decision 
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Regression

y



Objective Functions for NNs
1. Quadratic Loss:
– the same objective as Linear Regression
– i.e. mean squared error

2. Cross-Entropy:
– the same objective as Logistic Regression
– i.e. negative log likelihood
– This requires probabilities, so we add an additional 

“softmax” layer at the end of our network
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Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� (y) + (1 � y�) (1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1



Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss



Multi-Class Output
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…

…

Output

Input

Hidden Layer

…



Multi-Class Output
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Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
(bk)

�K
l=1 (bl)

(F) Loss
J =

�K
k=1 y�

k (yk)

(E) Output (softmax)
yk = (bk)�K

l=1 (bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i



Neural Network Errors
Question A: On which of the datasets below 
could a one-hidden layer neural network 
achieve zero classification error? Select all 
that apply.
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Question B: On which of the datasets 
below could a one-hidden layer neural 
network for regression achieve nearly zero 
MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)



DECISION BOUNDARY EXAMPLES
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Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets



Example #1: Diagonal Band
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Example #1: Diagonal Band
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Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden



Example #1: Diagonal Band
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hidden

hidden

hiddenhidden



Example #2: One Pocket
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Example #2: One Pocket
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Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden



Example #2: One Pocket
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hidden hidden

hiddenhidden



Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians

62

hidden



Example #3: Four Gaussians
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hidden



Example #3: Four Gaussians
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hidden



Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Example #4: Two Pockets
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hidden



Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary 

logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures

• Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning 
features

• Identify (some of) the options available when designing 
the architecture of a neural network

• Implement a feed-forward neural network

74



DIFFERENTIATION
Computing Gradients
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A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

76

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)



Approaches to 
Differentiation

• Question 1:
When can we compute the gradients for an 
arbitrary neural network?

• Question 2:
When can we make the gradient 
computation efficient?

77

Training



Approaches to 
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of backpropagation
– Con: Slow for high dimensional inputs / outputs
– Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation
– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha / Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time if not carefully implemented
– Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied to Neural Nets
– Pro: Computes partial derivatives of one output f(x)i with respect to all inputs xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional outputs (e.g. vector-valued functions)
– Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode
– Note: Easy to implement. Uses dual numbers.
– Pro: Computes partial derivatives of all outputs f(x)i with respect to one input xj in time proportional 

to computation of f(x)
– Con: Slow for high dimensional inputs (e.g. vector-valued x)
– Required: Algorithm for computing f(x)
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Training



Finite Difference Method

Notes:
• Suffers from issues of 

floating point precision, in 
practice

• Typically only appropriate 
to use on small examples 
with an appropriately 
chosen epsilon

79

Training



Symbolic Differentiation
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Training

A. [42, -72]

B. [72, -42]
C. [100, 127]

D. [127, 100]

E. [1208, 810]

F. [810, 1208]
G. [1505, 94]

H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Symbolic Differentiation

Differentiation Quiz #2:

82

Training

…

…

…



CHAIN RULE
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Chain Rule

Chalkboard
– Chain Rule of Calculus

84

Training



Chain Rule

85

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)
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Chain Rule:
Given: 

…



Chain Rule

86
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Chain Rule:
Given: 

…
Backpropagation
is just repeated 
application of the 
chain rule from 
Calculus 101.



BACKPROPAGATION
Intuitions
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Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation

94
Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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Slide from (Stoyanov & Eisner, 2012)



Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



BACKPROPAGATION
Algorithm
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Backpropagation

Chalkboard
– Example: Backpropagation for Chain Rule #1

99
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Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.



Backpropagation

Chalkboard
– SGD for Neural Network
– Example: Backpropagation for Neural Network

100

Training



Backpropagation

101
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Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The 

algorithm defines a directed acyclic graph, where each variable is a 
node (i.e. the “computation graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables


