
Neural Networks
+

Backpropagation

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 13

Oct. 7, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 4: Logistic Regression

– Out: Wed, Sep. 25

– Due: Fri, Oct. 11 at 11:59pm

• Homework 5: Neural Networks

– Out: Fri, Oct. 11

– Due: Fri, Oct. 25 at 11:59pm

• Today’s In-Class Poll

– http://p13.mlcourse.org

2

Q&A

3

Q: What is mini-batch SGD?

A: A variant of SGD…

Mini-Batch SGD

• Gradient Descent:
Compute true gradient exactly from all N
examples

• Mini-Batch SGD:
Approximate true gradient by the average
gradient of K randomly chosen examples

• Stochastic Gradient Descent (SGD):
Approximate true gradient by the gradient
of one randomly chosen example

4

Mini-Batch SGD

5

Three variants of first-order optimization:

NEURAL NETWORKS

6

Neural Networks

Chalkboard
– Example: Neural Network w/1 Hidden Layer
– Example: Neural Network w/2 Hidden Layers
– Example: Feed Forward Neural Network

7

Neural Network Parameters
Question:
Suppose you are training a
one-hidden layer neural
network with sigmoid
activations for binary
classification.

True or False: There is a
unique set of parameters
that maximize the
likelihood of the dataset
above.

8

Answer:

ARCHITECTURES

9

Neural Network Architectures

Even for a basic Neural Network, there are
many design decisions to make:

1. # of hidden layers (depth)
2. # of units per hidden layer (width)

3. Type of activation function (nonlinearity)
4. Form of objective function

10

Building a Neural Net

13

…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?

Building a Neural Net

14

…

…

Output

Input

Hidden Layer
D = M

Q: How many hidden units, D, should we use?

Building a Neural Net

15

…

…

Output

Input

Hidden Layer
D < M

What method(s) is
this setting similar to?

Q: How many hidden units, D, should we use?

Building a Neural Net

16

…

…

Output

Input

Hidden Layer
D > M

What method(s) is
this setting similar to?

Q: How many hidden units, D, should we use?

Deeper Networks

17

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?

Deeper Networks

18

…

…Input

Hidden Layer 1

…

Output

Hidden Layer 2

Q: How many layers should we use?

Q: How many layers should we use?

Deeper Networks

19

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Deeper Networks

20

…

…

Output

Input

Hidden Layer 1

Q: How many layers should we use?
• Theoretical answer:

– A neural network with 1 hidden layer is a universal function
approximator

– Cybenko (1989): For any continuous function g(x), there
exists a 1-hidden-layer neural net hθ(x)
s.t. | hθ(x) – g(x) | < ϵ for all x, assuming sigmoid activation
functions

• Empirical answer:
– Before 2006: “Deep networks (e.g. 3 or more hidden layers)

are too hard to train”

– After 2006: “Deep networks are easier to train than shallow
networks (e.g. 2 or fewer layers) for many problems”

Big caveat: You need to know and use the right tricks.

Different Levels of Abstraction

• We don’t know
the “right”
levels of
abstraction

• So let the model
figure it out!

24
Example from Honglak Lee (NIPS 2010)

Different Levels of Abstraction

Face Recognition:
– Deep Network

can build up
increasingly
higher levels of
abstraction

– Lines, parts,
regions

25
Example from Honglak Lee (NIPS 2010)

Different Levels of Abstraction

26
Example from Honglak Lee (NIPS 2010)

…

…Input

Hidden Layer 1

…Hidden Layer 2

…

Output

Hidden Layer 3

Activation Functions

27

…

…

Output

Input

Hidden Layer

Neural Network with sigmoid
activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Activation Functions

28

…

…

Output

Input

Hidden Layer

Neural Network with arbitrary
nonlinear activation functions

(F) Loss
J = 1

2 (y � y�)2

(E) Output (nonlinear)
y = �(b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Activation Functions

So far, we’ve
assumed that the
activation function
(nonlinearity) is
always the sigmoid
function…

29

Sigmoid / Logistic Function

logistic(u) ≡ 1
1+ e−u

Activation Functions

• A new change: modifying the nonlinearity
– The logistic is not widely used in modern ANNs

Alternate 1:
tanh

Like logistic function but
shifted to range [-1, +1]

Slide from William Cohen

AI Stats 2010

sigmoid
vs.
tanh

depth 4?

Figure from Glorot & Bentio (2010)

Activation Functions

• A new change: modifying the nonlinearity
– reLU often used in vision tasks

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient
when you pass zero)

Slide from William Cohen

Activation Functions

• A new change: modifying the nonlinearity
– reLU often used in vision tasks

Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn’t saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient

Slide from William Cohen

Neural Network

34

Decision
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Classification

Neural Network

35

Decision
Functions

…

…

Output

Input

Hidden Layer

(F) Loss
J = 1

2 (y � y(d))2

(E) Output (sigmoid)
y = 1

1+ (�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+ (�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network for Regression

y

Objective Functions for NNs
1. Quadratic Loss:
– the same objective as Linear Regression
– i.e. mean squared error

2. Cross-Entropy:
– the same objective as Logistic Regression
– i.e. negative log likelihood
– This requires probabilities, so we add an additional

“softmax” layer at the end of our network

36

Forward Backward

Quadratic J =
1

2
(y � y�)2

dJ

dy
= y � y�

Cross Entropy J = y� (y) + (1 � y�) (1 � y)
dJ

dy
= y� 1

y
+ (1 � y�)

1

y � 1

Objective Functions for NNs

Figure from Glorot & Bentio (2010)

Cross-entropy vs. Quadratic loss

Multi-Class Output

38

…

…

Output

Input

Hidden Layer

…

Multi-Class Output

39

Softmax:

…

…

Output

Input

Hidden Layer

…

yk =
(bk)

�K
l=1 (bl)

(F) Loss
J =

�K
k=1 y�

k (yk)

(E) Output (softmax)
yk = (bk)�K

l=1 (bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Neural Network Errors
Question A: On which of the datasets below
could a one-hidden layer neural network
achieve zero classification error? Select all
that apply.

40

Question B: On which of the datasets
below could a one-hidden layer neural
network for regression achieve nearly zero
MSE? Select all that apply.

A) B)

C) D)

A) B)

C) D)

DECISION BOUNDARY EXAMPLES

41

42

Example #1: Diagonal Band Example #2: One Pocket

Example #3: Four Gaussians Example #4: Two Pockets

Example #1: Diagonal Band

43

Example #1: Diagonal Band

44

Example #1: Diagonal Band

45

hidden

Example #1: Diagonal Band

46

hidden

Example #1: Diagonal Band

47

hidden

Example #1: Diagonal Band

48

hidden

Example #1: Diagonal Band

49

hidden

hidden

hiddenhidden

Example #2: One Pocket

50

Example #2: One Pocket

51

Example #2: One Pocket

52

hidden

Example #2: One Pocket

53

hidden

Example #2: One Pocket

54

hidden

Example #2: One Pocket

55

hidden

Example #2: One Pocket

56

hidden

Example #2: One Pocket

57

hidden hidden

hiddenhidden

Example #3: Four Gaussians

58

Example #3: Four Gaussians

59

Example #3: Four Gaussians

60

Example #3: Four Gaussians

61

hidden

Example #3: Four Gaussians

62

hidden

Example #3: Four Gaussians

63

hidden

Example #3: Four Gaussians

64

hidden

Example #4: Two Pockets

65

Example #4: Two Pockets

66

Example #4: Two Pockets

67

Example #4: Two Pockets

68

Example #4: Two Pockets

69

Example #4: Two Pockets

70

hidden

Example #4: Two Pockets

71

hidden

Example #4: Two Pockets

72

hidden

Example #4: Two Pockets

73

hidden

Neural Networks Objectives
You should be able to…
• Explain the biological motivations for a neural network
• Combine simpler models (e.g. linear regression, binary

logistic regression, multinomial logistic regression) as
components to build up feed-forward neural network
architectures

• Explain the reasons why a neural network can model
nonlinear decision boundaries for classification

• Compare and contrast feature engineering with learning
features

• Identify (some of) the options available when designing
the architecture of a neural network

• Implement a feed-forward neural network

74

DIFFERENTIATION
Computing Gradients

75

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

76

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Approaches to
Differentiation

• Question 1:
When can we compute the gradients for an
arbitrary neural network?

• Question 2:
When can we make the gradient
computation efficient?

77

Training

Approaches to
Differentiation

1. Finite Difference Method
– Pro: Great for testing implementations of backpropagation
– Con: Slow for high dimensional inputs / outputs
– Required: Ability to call the function f(x) on any input x

2. Symbolic Differentiation
– Note: The method you learned in high-school
– Note: Used by Mathematica / Wolfram Alpha / Maple
– Pro: Yields easily interpretable derivatives
– Con: Leads to exponential computation time if not carefully implemented
– Required: Mathematical expression that defines f(x)

3. Automatic Differentiation - Reverse Mode
– Note: Called Backpropagation when applied to Neural Nets
– Pro: Computes partial derivatives of one output f(x)i with respect to all inputs xj in time proportional

to computation of f(x)
– Con: Slow for high dimensional outputs (e.g. vector-valued functions)
– Required: Algorithm for computing f(x)

4. Automatic Differentiation - Forward Mode
– Note: Easy to implement. Uses dual numbers.
– Pro: Computes partial derivatives of all outputs f(x)i with respect to one input xj in time proportional

to computation of f(x)
– Con: Slow for high dimensional inputs (e.g. vector-valued x)
– Required: Algorithm for computing f(x)

78

Training

Finite Difference Method

Notes:
• Suffers from issues of

floating point precision, in
practice

• Typically only appropriate
to use on small examples
with an appropriately
chosen epsilon

79

Training

Symbolic Differentiation

80

Training

A. [42, -72]

B. [72, -42]
C. [100, 127]

D. [127, 100]

E. [1208, 810]

F. [810, 1208]
G. [1505, 94]

H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Speed Quiz:

2 minute time limit.

Symbolic Differentiation

Differentiation Quiz #2:

82

Training

…

…

…

CHAIN RULE

83

Chain Rule

Chalkboard
– Chain Rule of Calculus

84

Training

Chain Rule

85

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

Chain Rule:
Given:

…

Chain Rule

86

Training

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

2.2. NEURAL NETWORKS AND BACKPROPAGATION

x to J , but also a manner of carrying out that computation in terms of the intermediate
quantities a, z, b, y. Which intermediate quantities to use is a design decision. In this
way, the arithmetic circuit diagram of Figure 2.1 is differentiated from the standard neural
network diagram in two ways. A standard diagram for a neural network does not show this
choice of intermediate quantities nor the form of the computations.

The topologies presented in this section are very simple. However, we will later (Chap-
ter 5) how an entire algorithm can define an arithmetic circuit.

2.2.2 Backpropagation
The backpropagation algorithm (Rumelhart et al., 1986) is a general method for computing
the gradient of a neural network. Here we generalize the concept of a neural network to
include any arithmetic circuit. Applying the backpropagation algorithm on these circuits
amounts to repeated application of the chain rule. This general algorithm goes under many
other names: automatic differentiation (AD) in the reverse mode (Griewank and Corliss,
1991), analytic differentiation, module-based AD, autodiff, etc. Below we define a forward
pass, which computes the output bottom-up, and a backward pass, which computes the
derivatives of all intermediate quantities top-down.

Chain Rule At the core of the backpropagation algorithm is the chain rule. The chain
rule allows us to differentiate a function f defined as the composition of two functions g
and h such that f = (g �h). If the inputs and outputs of g and h are vector-valued variables
then f is as well: h : RK

! RJ and g : RJ
! RI

) f : RK
! RI . Given an input

vector x = {x
1

, x
2

, . . . , xK}, we compute the output y = {y
1

, y
2

, . . . , yI}, in terms of an
intermediate vector u = {u

1

, u
2

, . . . , uJ}. That is, the computation y = f(x) = g(h(x))
can be described in a feed-forward manner: y = g(u) and u = h(x). Then the chain rule
must sum over all the intermediate quantities.

dyi

dxk
=

JX

j=1

dyi

duj

duj

dxk
, 8i, k (2.3)

If the inputs and outputs of f , g, and h are all scalars, then we obtain the familiar form
of the chain rule:

dy

dx
=

dy

du

du

dx
(2.4)

Binary Logistic Regression Binary logistic regression can be interpreted as a arithmetic
circuit. To compute the derivative of some loss function (below we use regression) with
respect to the model parameters ✓, we can repeatedly apply the chain rule (i.e. backprop-
agation). Note that the output q below is the probability that the output label takes on the
value 1. y⇤ is the true output label. The forward pass computes the following:

J = y⇤
log q + (1 � y⇤

) log(1 � q) (2.5)

where q = P
✓

(Yi = 1|x) =

1

1 + exp(�

PD
j=0

✓jxj)
(2.6)

13

Chain Rule:
Given:

…
Backpropagation
is just repeated
application of the
chain rule from
Calculus 101.

BACKPROPAGATION
Intuitions

87

Error Back-Propagation

88
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

89
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

90
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

91
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

92
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

93
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

94
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

95
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

96
Slide from (Stoyanov & Eisner, 2012)

Error Back-Propagation

97

y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)

BACKPROPAGATION
Algorithm

98

Backpropagation

Chalkboard
– Example: Backpropagation for Chain Rule #1

99

Training

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the
function below? Round your answer to the nearest
integer.

Backpropagation

Chalkboard
– SGD for Neural Network
– Example: Backpropagation for Neural Network

100

Training

Backpropagation

101

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The

algorithm defines a directed acyclic graph, where each variable is a
node (i.e. the “computation graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

