



#### 10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

# Neural Networks

# Backpropagation

Matt Gormley Lecture 13 Oct. 7, 2019

### Reminders

- Homework 4: Logistic Regression
  - Out: Wed, Sep. 25
  - Due: Fri, Oct. 11 at 11:59pm
- Homework 5: Neural Networks
  - Out: Fri, Oct. 11
  - Due: Fri, Oct. 25 at 11:59pm
- Today's In-Class Poll
  - http://p13.mlcourse.org

## Q&A

Q: What is mini-batch SGD?

A: A variant of SGD...

#### Mini-Batch SGD

#### Gradient Descent:

Compute true gradient exactly from all N examples

#### Mini-Batch SGD:

Approximate true gradient by the average gradient of K randomly chosen examples

## Stochastic Gradient Descent (SGD):

Approximate true gradient by the gradient of one randomly chosen example

#### Mini-Batch SGD

while not converged:  $\theta \leftarrow \theta - \lambda \mathbf{g}$ 

#### Three variants of first-order optimization:

Gradient Descent: 
$$\mathbf{g} = \nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^N \nabla J^{(i)}(\boldsymbol{\theta})$$
 SGD:  $\mathbf{g} = \nabla J^{(i)}(\boldsymbol{\theta})$  where  $i$  sampled uniformly Mini-batch SGD:  $\mathbf{g} = \frac{1}{S} \sum_{s=1}^S \nabla J^{(i_s)}(\boldsymbol{\theta})$  where  $i_s$  sampled uniformly  $\forall s$ 

## **NEURAL NETWORKS**

#### **Neural Networks**

#### Chalkboard

- Example: Neural Network w/1 Hidden Layer
- Example: Neural Network w/2 Hidden Layers
- Example: Feed Forward Neural Network

#### Neural Network Parameters

#### **Question:**

Suppose you are training a one-hidden layer neural network with sigmoid activations for binary classification.



True or False: There is a unique set of parameters that maximize the likelihood of the dataset above.



#### **Answer:**

## **ARCHITECTURES**

#### Neural Network Architectures

Even for a basic Neural Network, there are many design decisions to make:

- # of hidden layers (depth)
- # of units per hidden layer (width)
- 3. Type of activation function (nonlinearity)
- 4. Form of objective function









Q: How many layers should we use?



## Q: How many layers should we use?



Q: How many layers should we use?



#### Q: How many layers should we use?

#### Theoretical answer:

- A neural network with 1 hidden layer is a universal function approximator
- Cybenko (1989): For any continuous function g(x), there exists a 1-hidden-layer neural net  $h_{\theta}(x)$  s.t.  $|h_{\theta}(x) g(x)| < \epsilon$  for all x, assuming sigmoid activation functions

#### Empirical answer:

- Before 2006: "Deep networks (e.g. 3 or more hidden layers) are too hard to train"
- After 2006: "Deep networks are easier to train than shallow networks (e.g. 2 or fewer layers) for many problems"

Big caveat: You need to know and use the right tricks.

## Different Levels of Abstraction

- We don't know the "right" levels of abstraction
- So let the model figure it out!



## Different Levels of Abstraction

## **Face Recognition:**

- Deep Network
   can build up
   increasingly
   higher levels of
   abstraction
- Lines, parts, regions



## Different Levels of Abstraction



Neural Network with sigmoid activation functions





Neural Network with arbitrary nonlinear activation functions





#### Sigmoid / Logistic Function

$$logistic(u) = \frac{1}{1 + e^{-u}}$$



So far, we've assumed that the activation function (nonlinearity) is always the sigmoid function...



- A new change: modifying the nonlinearity
  - The logistic is not widely used in modern ANNs



Alternate 1:

tanh

Like logistic function but shifted to range [-1, +1]



#### Understanding the difficulty of training deep feedforward neural networks



Figure from Glorot & Bentio (2010)

- A new change: modifying the nonlinearity
  - reLU often used in vision tasks



 $\max(0, w \cdot x + b)$ .

Alternate 2: rectified linear unit

Linear with a cutoff at zero

(Implementation: clip the gradient when you pass zero)



- A new change: modifying the nonlinearity
  - reLU often used in vision tasks



Alternate 2: rectified linear unit

Soft version: log(exp(x)+1)

Doesn't saturate (at one end)
Sparsifies outputs
Helps with vanishing gradient



## Decision Functions

## Neural Network

#### **Neural Network for Classification**





## Decision Functions

## Neural Network

#### **Neural Network for Regression**





# Objective Functions for NNs

#### 1. Quadratic Loss:

- the same objective as Linear Regression
- i.e. mean squared error

#### 2. Cross-Entropy:

- the same objective as Logistic Regression
- i.e. negative log likelihood

**Forward** 

- This requires probabilities, so we add an additional "softmax" layer at the end of our network

# Quadratic $J=\frac{1}{2}(y-y^*)^2$ $\frac{dJ}{dy}=y-y^*$ Cross Entropy $J=y^*\log(y)+(1-y^*)\log(1-y)$ $\frac{dJ}{dy}=y^*\frac{1}{y}+(1-y^*)\frac{1}{y-1}$

Cross Entropy 
$$J = y^* \log(y) + (1 - y^*) \log(1 - y)$$

$$\frac{dJ}{dy} = y - y^*$$

$$\frac{dJ}{dy} = y^* \frac{1}{y} + (1 - y^*) \frac{1}{y - 1}$$

# Objective Functions for NNs

#### **Cross-entropy vs. Quadratic loss**



Figure 5: Cross entropy (black, surface on top) and quadratic (red, bottom surface) cost as a function of two weights (one at each layer) of a network with two layers,  $W_1$  respectively on the first layer and  $W_2$  on the second, output layer.

# Multi-Class Output



## Multi-Class Output

#### Softmax:

$$y_k = \frac{\exp(b_k)}{\sum_{l=1}^K \exp(b_l)}$$





## **Neural Network Errors**

**Question A:** On which of the datasets below could a one-hidden layer neural network achieve zero *classification* error? **Select all that apply.** 

**Question B:** On which of the datasets below could a one-hidden layer neural network for regression achieve nearly zero MSE? **Select all that apply.** 



## **DECISION BOUNDARY EXAMPLES**



#### Example #3: Four Gaussians





Example #4: Two Pockets







Tuned Neural Network (hidden=2, activation=logistic)















Tuned Neural Network (hidden=3, activation=logistic)







































Tuned Neural Network (hidden=2, activation=logistic)



Tuned Neural Network (hidden=3, activation=logistic)



Tuned Neural Network (hidden=4, activation=logistic)



Tuned Neural Network (hidden=10, activation=logistic)



#### Neural Networks Objectives

#### You should be able to...

- Explain the biological motivations for a neural network
- Combine simpler models (e.g. linear regression, binary logistic regression, multinomial logistic regression) as components to build up feed-forward neural network architectures
- Explain the reasons why a neural network can model nonlinear decision boundaries for classification
- Compare and contrast feature engineering with learning features
- Identify (some of) the options available when designing the architecture of a neural network
- Implement a feed-forward neural network

**Computing Gradients** 

#### **DIFFERENTIATION**

#### Background

# A Recipe for Machine Learning

1. Given training data:

$$\{oldsymbol{x}_i, oldsymbol{y}_i\}_{i=1}^N$$

- 2. Choose each of these:
  - Decision function

$$\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$$

Loss function

$$\ell(\hat{m{y}},m{y}_i)\in\mathbb{R}$$

3. Define goal:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \sum_{i=1}^N \ell(f_{oldsymbol{ heta}}(oldsymbol{x}_i), oldsymbol{y}_i)$$

4. Train with SGD:

(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

#### Training

# Approaches to Differentiation

#### Question 1:

When can we compute the gradients for an arbitrary neural network?

#### Question 2:

When can we make the gradient computation efficient?

# Approaches to Differentiation

#### 1. Finite Difference Method

- Pro: Great for testing implementations of backpropagation
- Con: Slow for high dimensional inputs / outputs
- Required: Ability to call the function f(x) on any input x

#### 2. Symbolic Differentiation

- Note: The method you learned in high-school
- Note: Used by Mathematica / Wolfram Alpha / Maple
- Pro: Yields easily interpretable derivatives
- Con: Leads to exponential computation time if not carefully implemented
- Required: Mathematical expression that defines f(x)

#### 3. Automatic Differentiation - Reverse Mode

- Note: Called Backpropagation when applied to Neural Nets
- Pro: Computes partial derivatives of one output  $f(x)_i$  with respect to all inputs  $x_j$  in time proportional to computation of f(x)
- Con: Slow for high dimensional outputs (e.g. vector-valued functions)
- Required: Algorithm for computing f(x)

#### 4. Automatic Differentiation - Forward Mode

- Note: Easy to implement. Uses dual numbers.
- Pro: Computes partial derivatives of all outputs  $f(x)_i$  with respect to one input  $x_j$  in time proportional to computation of f(x)
- Con: Slow for high dimensional inputs (e.g. vector-valued x)
- Required: Algorithm for computing f(x)

Given 
$$f: \mathbb{R}^A o \mathbb{R}^B, f(\mathbf{x})$$
Compute  $\frac{\partial f(\mathbf{x})_i}{\partial x_i} orall i, j$ 

# Finite Difference Method

The centered finite difference approximation is:

$$\frac{\partial}{\partial \theta_i} J(\boldsymbol{\theta}) \approx \frac{(J(\boldsymbol{\theta} + \epsilon \cdot \boldsymbol{d}_i) - J(\boldsymbol{\theta} - \epsilon \cdot \boldsymbol{d}_i))}{2\epsilon} \tag{1}$$

where  $d_i$  is a 1-hot vector consisting of all zeros except for the ith

entry of  $d_i$ , which has value 1.

#### **Notes:**

- Suffers from issues of floating point precision, in practice
- Typically only appropriate to use on small examples with an appropriately chosen epsilon



# Symbolic Differentiation

#### Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

**Answer:** Answers below are in the form [dy/dx, dy/dz]

# Symbolic Differentiation

#### Differentiation Quiz #2:

A neural network with 2 hidden layers can be written as:

$$y = \sigma(\boldsymbol{\beta}^T \sigma((\boldsymbol{\alpha}^{(2)})^T \sigma((\boldsymbol{\alpha}^{(1)})^T \mathbf{x}))$$

where  $y \in \mathbb{R}$ ,  $\mathbf{x} \in \mathbb{R}^{D^{(0)}}$ ,  $\boldsymbol{\beta} \in \mathbb{R}^{D^{(2)}}$  and  $\boldsymbol{\alpha}^{(i)}$  is a  $D^{(i)} \times D^{(i-1)}$  matrix. Nonlinear functions are applied elementwise:

$$\sigma(\mathbf{a}) = [\sigma(a_1), \dots, \sigma(a_K)]^T$$

Let  $\sigma$  be sigmoid:  $\sigma(a)=\frac{1}{1+exp-a}$  What is  $\frac{\partial y}{\partial \beta_j}$  and  $\frac{\partial y}{\partial \alpha_j^{(i)}}$  for all i,j.



## **CHAIN RULE**

# Chain Rule

#### Chalkboard

Chain Rule of Calculus

### Chain Rule

Given: y = g(u) and u = h(x).

**Chain Rule:** 

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$



# Chain Rule

Given: y = g(u) and u = h(x).

**Chain Rule:** 

$$\frac{dy_i}{dx_k} = \sum_{j=1}^{J} \frac{dy_i}{du_j} \frac{du_j}{dx_k}, \quad \forall i, k$$

## Backpropagation

is just repeated application of the **chain rule** from Calculus 101.



Intuitions

### **BACKPROPAGATION**





















Algorithm

### **BACKPROPAGATION**

# Backpropagation

#### Chalkboard

Example: Backpropagation for Chain Rule #1

#### Differentiation Quiz #1:

Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the function below? Round your answer to the nearest integer.

$$y = \exp(xz) + \frac{xz}{\log(x)} + \frac{\sin(\log(x))}{xz}$$

# Backpropagation

#### Chalkboard

- SGD for Neural Network
- Example: Backpropagation for Neural Network

# Backpropagation

#### **Automatic Differentiation – Reverse Mode (aka. Backpropagation)**

#### **Forward Computation**

- Write an **algorithm** for evaluating the function y = f(x). The algorithm defines a directed acyclic graph, where each variable is a node (i.e. the "computation graph")
- 2. Visit each node in topological order.

For variable  $u_i$  with inputs  $v_1, \dots, v_N$ 

- a. Compute  $u_i = g_i(v_1,..., v_N)$ b. Store the result at the node

#### **Backward Computation**

- Initialize all partial derivatives dy/du; to 0 and dy/dy = 1.
- Visit each node in reverse topological order.

For variable  $u_i = g_i(v_1,..., v_N)$ a. We already know dy/du<sub>i</sub>

- b. Increment dy/dv<sub>j</sub> by (dy/du<sub>i</sub>)(du<sub>i</sub>/dv<sub>j</sub>) (Choice of algorithm ensures computing (du<sub>i</sub>/dv<sub>j</sub>) is easy)