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Reminders

• Midterm Exam 1

– Thu, Oct. 03, 6:30pm – 8:00pm

• Homework 4: Logistic Regression

– Out: Wed, Sep. 25

– Due: Fri, Oct. 11 at 11:59pm

• Today’s In-Class Poll

– http://p11.mlcourse.org

• HW3 grades published

• Crowdsourcing Exam Questions
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MULTINOMIAL LOGISTIC 
REGRESSION
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Multinomial Logistic Regression
Chalkboard
– Background: Multinomial distribution
– Definition: Multi-class classification
– Geometric intuitions
– Multinomial logistic regression model 
– Generative story
– Reduction to binary logistic regression
– Partial derivatives and gradients
– Applying Gradient Descent and SGD
– Implementation w/ sparse features
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Debug that Program!
In-Class Exercise: Think-Pair-Share
Debug the following program which is (incorrectly) 
attempting to run SGD for multinomial logistic regression
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Buggy Program:
while not converged:

for i in shuffle([1,…,N]):
for k in [1,…,K]:

theta[k] = theta[k] - lambda * grad(x[i], y[i], 
theta, k)

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative 
log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k]. 
lambda is the learning rate. N = # of examples. K = # of output classes. M = # of 
features. theta is a K by M matrix.



FEATURE ENGINEERING
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Handcrafted Features
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NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
exp(Θy�f( ))

born-in



Where do features come from?
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Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types



Where do features come from?
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Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words)

embeddin
g

missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning



Where do features come from?
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2013

string
embeddings

Collobert & Weston, 
2008

Socher, 2011

Convolutional Neural Networks 
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder 
(Socher 2011)

The [movie] showed [wars]

RAE



Where do features come from?
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Where do features come from?
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Where do features come from?
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Feature Engineering for NLP

Suppose you build a logistic regression model 
to predict a part-of-speech (POS) tag for each 
word in a sentence.

What features should you use?
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The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb



Per-word Features:

Feature Engineering for NLP
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The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

is-capital(wi)

endswith(wi,“e”)

endswith(wi,“d”)

endswith(wi,“ed”)

wi == “aardvark”

wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)



Context Features:

Feature Engineering for NLP
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The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)



Context Features:

Feature Engineering for NLP
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The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)



Feature Engineering for NLP
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The    movie     I    watched    depicted   hope
deter. noun noun nounverb verb

and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments.

Set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +⟨t0, w−2⟩, ⟨t0, w2⟩ 730,178 56.23% 97.20% 89.03%
5wShapes +⟨t0, s−1⟩, ⟨t0, s0⟩, ⟨t0, s+1⟩ 731,661 56.52% 97.25% 89.81%
5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates ⟨t0, w−1⟩, ⟨t0, w0⟩, ⟨t0, w+1⟩,
⟨t0, t−1⟩, ⟨t0, t−2, t−1⟩ and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates ⟨t0, t+1⟩,
⟨t0, t+1, t+2⟩, ⟨t0, t−1, t+1⟩, ⟨t0, t−1, w0⟩, ⟨t0, t+1, w0⟩, ⟨t0, w−1, w0⟩, ⟨t0, w0, w+1⟩
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little by
adding features. 5w adds the words two to the left and right as features, and
5wShapes also adds word shape features that we have described for named en-

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!

Table from Manning (2011)



Feature Engineering for CV
Edge detection (Canny)

26
Figures from http://opencv.org

Corner Detection (Harris)



Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

27
Figure from Lowe (1999) and Lowe (2004)



NON-LINEAR FEATURES
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Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define 

• Examples: (M = 1)

30

For a linear model: 
still a linear function 
of b(x) even though a 
nonlinear function of 
x
Examples:
- Perceptron
- Linear regression
- Logistic regression



Example: Linear Regression

31x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise



Example: Linear Regression
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Example: Linear Regression
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Example: Linear Regression
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Example: Linear Regression
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Example: Linear Regression
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Example: Linear Regression
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Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen



Polynomial Coefficients   

Slide courtesy of William Cohen



Example: Linear Regression
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Example: Linear Regression

41x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

Same as before, but now 
with N = 100 points

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise



REGULARIZATION
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Overfitting
Definition: The problem of overfitting is when 
the model captures the noise in the training data 
instead of the underlying structure 

Overfitting can occur in all the models we’ve seen 
so far: 
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)
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Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict 

Google’s stock price at time t+1 
• What features should we use?

(putting all computational concerns 
aside)
– Stock prices of all other stocks at 

times t, t-1, t-2, …, t - k
– Mentions of Google with positive / 

negative sentiment words in all 
newspapers and social media outlets

• Do we believe that all of these 
features are going to be useful?
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Motivation: Regularization

• Occam’s Razor: prefer the simplest 
hypothesis

• What does it mean for a hypothesis (or 
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features 

(shrinkage)

45



Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff 
between fitting the data and keeping the model 
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm)

46



Regularization

48

Question:
Suppose we are minimizing J’(θ) 
where

As λ increases, the minimum of J’(θ) 
will move…

A. …towards the midpoint between 
J’(θ) and r(θ)

B. …towards the minimum of J(θ) 
C. …towards the minimum of r(θ)
D. …towards a theta vector of positive 

infinities
E. …towards a theta vector of negative 

infinities



Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot test error vs . regularization weight (cartoon)

50
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Regularization
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Question:
Suppose we are minimizing J’(θ) 
where

As we increase λ from 0, the the 
validation error will…

A. …increase
B. …decrease
C. …first increase, then decrease
D. …first decrease, then increase
E. …stay the same



Regularization
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Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is 

usually denoted by !" -- that is, the parameter for which 
we fixed #" = 1

• Regularizers always avoid penalizing this bias / intercept 
parameter

• Why? Because otherwise the learning algorithms wouldn’t 
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its 

mean and dividing by its variance
• For regularization, this helps all the features be penalized 

in the same units 
(e.g. convert both centimeters and kilometers to z-scores)



Example: Logistic Regression
• For this example, we 

construct nonlinear features 
(i.e. feature engineering)

• Specifically, we add 
polynomials up to order 9 of 
the two original features x1
and x2

• Thus our classifier is linear in 
the high-dimensional 
feature space, but the 
decision boundary is 
nonlinear when visualized in 
low-dimensions (i.e. the 
original two dimensions)

57

Training 
Data

Test
Data



Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression
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Example: Logistic Regression

69



Example: Logistic Regression
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Example: Logistic Regression

71



Example: Logistic Regression
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Regularization as MAP

• L1 and L2 regularization can be interpreted 
as maximum a-posteriori (MAP) estimation 
of the parameters

• To be discussed later in the course…
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Takeaways

1. Nonlinear basis functions allow linear 
models (e.g. Linear Regression, Logistic 
Regression) to capture nonlinear aspects of 
the original input

2. Nonlinear features are require no changes 
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are 

equivalent for appropriately chosen priors
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Feature Engineering / Regularization 
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and 

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to 

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly 

separable dataset in higher dimensions
• Describe feature engineering in common application 

areas
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Neural Networks Outline

• Logistic Regression (Recap)
– Data, Model, Learning, Prediction

• Neural Networks
– A Recipe for Machine Learning
– Visual Notation for Neural Networks
– Example: Logistic Regression Output Surface
– 2-Layer Neural Network
– 3-Layer Neural Network

• Neural Net Architectures
– Objective Functions
– Activation Functions

• Backpropagation
– Basic Chain Rule (of calculus)
– Chain Rule for Arbitrary Computation Graph
– Backpropagation Algorithm
– Module-based Automatic Differentiation (Autodiff)
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NEURAL NETWORKS

99



A Recipe for 
Machine Learning

1. Given training data:

100

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression, 
Logistic regression, Neural Network

Examples: Mean-squared error, 
Cross Entropy



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

101

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

102

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 

And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

103

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps 
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions 
(Neural Networks)

2. Consider variants of this recipe for training



Linear Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)



y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face



y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

Logistic Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Perceptron
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)


