
Multinomial Logistic Regression
+

Feature Engineering

1

10-601 Introduction to Machine Learning

Matt Gormley
Lecture 11

Sep. 30, 2019

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Midterm Exam 1

– Thu, Oct. 03, 6:30pm – 8:00pm

• Homework 4: Logistic Regression

– Out: Wed, Sep. 25

– Due: Fri, Oct. 11 at 11:59pm

• Today’s In-Class Poll

– http://p11.mlcourse.org

• HW3 grades published

• Crowdsourcing Exam Questions

3

MULTINOMIAL LOGISTIC
REGRESSION

4

5

Multinomial Logistic Regression
Chalkboard
– Background: Multinomial distribution
– Definition: Multi-class classification
– Geometric intuitions
– Multinomial logistic regression model
– Generative story
– Reduction to binary logistic regression
– Partial derivatives and gradients
– Applying Gradient Descent and SGD
– Implementation w/ sparse features

6

Debug that Program!
In-Class Exercise: Think-Pair-Share
Debug the following program which is (incorrectly)
attempting to run SGD for multinomial logistic regression

7

Buggy Program:
while not converged:

for i in shuffle([1,…,N]):
for k in [1,…,K]:

theta[k] = theta[k] - lambda * grad(x[i], y[i],
theta, k)

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative
log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k].
lambda is the learning rate. N = # of examples. K = # of output classes. M = # of
features. theta is a K by M matrix.

FEATURE ENGINEERING

9

Handcrafted Features

10

NNP : VBN NNP VBD

PERLOC

Egypt - born Proyas directed

S

NP VP

ADJP VPNP

egypt - born proyas direct

p(y|x) ∝
exp(Θy�f())

born-in

Where do features come from?

11

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005

First word before M1
Second word before M1
Bag-of-words in M1
Head word of M1
Other word in between
First word after M2
Second word after M2
Bag-of-words in M2
Head word of M2
Bigrams in between
Words on dependency path
Country name list
Personal relative triggers
Personal title list
WordNet Tags
Heads of chunks in between
Path of phrase labels
Combination of entity types

Where do features come from?

12

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

CBOW model in Mikolov et al. (2013)

input
(context words)

embeddin
g

missing word

Look-up table Classifier

0.13 .26 … -.52

0.11 .23 … -.45

dog:

cat:similar words,
similar embeddings

unsupervised
learning

Where do features come from?

13

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

Convolutional Neural Networks
(Collobert and Weston 2008)

The [movie] showed [wars]

pooling

CNN

Recursive Auto Encoder
(Socher 2011)

The [movie] showed [wars]

RAE

Where do features come from?

14

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

hand-crafted
features

Sun et al., 2011

Zhou et al.,
2005 word

embeddings
Mikolov et al.,

2013

tree
embeddings

Socher et al.,
2013

Hermann & Blunsom,
2013

string
embeddings

Collobert & Weston,
2008

Socher, 2011

The [movie] showed [wars]

WNP,VP

WDT,NN WV,NN

S

NP VP

Where do features come from?

15

word
embeddings

tree
embeddings

hand-crafted
features

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Hermann & Blunsom,
2013

Hermann et al.
2014

word embedding
features

Turian et al.
2010

Koo et al.
2008

Refine embedding

features with

semantic/syntactic info

Where do features come from?

16

word
embeddings

tree
embeddings

word embedding
featureshand-crafted

features

best of both
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston,
2008

Socher, 2011

Socher et al.,
2013

Turian et al.
2010

Koo et al.
2008

Hermann et al.
2014

Hermann & Blunsom,
2013

Feature Engineering for NLP

Suppose you build a logistic regression model
to predict a part-of-speech (POS) tag for each
word in a sentence.

What features should you use?

17
The movie I watched depicted hope
deter. noun noun nounverb verb

Per-word Features:

Feature Engineering for NLP

18
The movie I watched depicted hope
deter. noun noun nounverb verb

is-capital(wi)

endswith(wi,“e”)

endswith(wi,“d”)

endswith(wi,“ed”)

wi == “aardvark”

wi == “hope”

…

1
1
0
0
0
0
…

0
1
0
0
0
0
…

1
0
0
0
0
0
…

0
0
1
1
0
0
…

0
0
1
1
0
0
…

0
1
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

19
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “watched”
wi+1 == “watched”
wi-1 == “watched”
wi+2 == “watched”
wi-2 == “watched”

…

…
0
0
0
0
0
…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

x(1) x(2) x(3) x(4) x(5) x(6)

Context Features:

Feature Engineering for NLP

20
The movie I watched depicted hope
deter. noun noun nounverb verb

…
wi == “I”
wi+1 == “I”
wi-1 == “I”
wi+2 == “I”
wi-2 == “I”

…

…
0
0
0
1
0
…

…
0
1
0
0
0
…

…
1
0
0
0
0
…

…
0
0
1
0
0
…

…
0
0
0
0
1
…

…
0
0
0
0
0
…

x(1) x(2) x(3) x(4) x(5) x(6)

Feature Engineering for NLP

21
The movie I watched depicted hope
deter. noun noun nounverb verb

and learning methods give small incremental gains in POS tagging performance,
bringing it close to parity with the best published POS tagging numbers in 2010.
These numbers are on the now fairly standard splits of the Wall Street Journal
portion of the Penn Treebank for POS tagging, following [6].3 The details of the
corpus appear in Table 2 and comparative results appear in Table 3.

Table 2. WSJ corpus for POS tagging experiments.

Set Sections Sentences Tokens Unknown
Training 0-18 38,219 912,344 0
Development 19-21 5,527 131,768 4,467
Test 22-24 5,462 129,654 3,649

Table 3. Tagging accuracies with different feature templates and other changes on the
WSJ 19-21 development set.

Model Feature Templates # Sent. Token Unk.
Feats Acc. Acc. Acc.

3gramMemm See text 248,798 52.07% 96.92% 88.99%
naacl 2003 See text and [1] 460,552 55.31% 97.15% 88.61%
Replication See text and [1] 460,551 55.62% 97.18% 88.92%
Replication′ +rareFeatureThresh = 5 482,364 55.67% 97.19% 88.96%
5w +⟨t0, w−2⟩, ⟨t0, w2⟩ 730,178 56.23% 97.20% 89.03%
5wShapes +⟨t0, s−1⟩, ⟨t0, s0⟩, ⟨t0, s+1⟩ 731,661 56.52% 97.25% 89.81%
5wShapesDS + distributional similarity 737,955 56.79% 97.28% 90.46%

3gramMemm shows the performance of a straightforward, fast, discrimina-
tive sequence model tagger. It uses the templates ⟨t0, w−1⟩, ⟨t0, w0⟩, ⟨t0, w+1⟩,
⟨t0, t−1⟩, ⟨t0, t−2, t−1⟩ and the unknown word features from [1]. The higher
performance naacl 2003 tagger numbers come from use of a bidirectional
cyclic dependency network tagger, which adds the feature templates ⟨t0, t+1⟩,
⟨t0, t+1, t+2⟩, ⟨t0, t−1, t+1⟩, ⟨t0, t−1, w0⟩, ⟨t0, t+1, w0⟩, ⟨t0, w−1, w0⟩, ⟨t0, w0, w+1⟩
The next line shows results from an attempt to replicate those numbers in 2010.
The results are similar but a fraction better.4 The line after that shows that
the numbers are pushed up a little by lowering the support threshold for in-
cluding rare word features to 5. Thereafter, performance is improved a little by
adding features. 5w adds the words two to the left and right as features, and
5wShapes also adds word shape features that we have described for named en-

3 In this paper, when I refer to “the Penn Treebank”, I am actually referring to just
the WSJ portion of the treebank, and am using the LDC99T42 Treebank release 3
version.

4 I think the improvements are due to a few bug fixes by Michel Galley. Thanks!

Table from Manning (2011)

Feature Engineering for CV
Edge detection (Canny)

26
Figures from http://opencv.org

Corner Detection (Harris)

Feature Engineering for CV

Scale Invariant Feature Transform (SIFT)

27
Figure from Lowe (1999) and Lowe (2004)

NON-LINEAR FEATURES

29

Nonlinear Features
• aka. “nonlinear basis functions”
• So far, input was always
• Key Idea: let input be some function of x

– original input:
– new input:
– define

• Examples: (M = 1)

30

For a linear model:
still a linear function
of b(x) even though a
nonlinear function of
x
Examples:
- Perceptron
- Linear regression
- Logistic regression

Example: Linear Regression

31x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

32x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

33x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

34x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

35x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

36x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

37x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Over-fitting

Root-Mean-Square (RMS) Error:

Slide courtesy of William Cohen

Polynomial Coefficients

Slide courtesy of William Cohen

Example: Linear Regression

40x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

Example: Linear Regression

41x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial
basis function

Same as before, but now
with N = 100 points

true “unknown”
target function is
linear with
negative slope
and gaussian
noise

REGULARIZATION

42

Overfitting
Definition: The problem of overfitting is when
the model captures the noise in the training data
instead of the underlying structure

Overfitting can occur in all the models we’ve seen
so far:
– Decision Trees (e.g. when tree is too deep)
– KNN (e.g. when k is small)
– Perceptron (e.g. when sample isn’t representative)
– Linear Regression (e.g. with nonlinear features)
– Logistic Regression (e.g. with many rare features)

43

Motivation: Regularization
Example: Stock Prices
• Suppose we wish to predict

Google’s stock price at time t+1
• What features should we use?

(putting all computational concerns
aside)
– Stock prices of all other stocks at

times t, t-1, t-2, …, t - k
– Mentions of Google with positive /

negative sentiment words in all
newspapers and social media outlets

• Do we believe that all of these
features are going to be useful?

44

Motivation: Regularization

• Occam’s Razor: prefer the simplest
hypothesis

• What does it mean for a hypothesis (or
model) to be simple?
1. small number of features (model selection)
2. small number of “important” features

(shrinkage)

45

Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff
between fitting the data and keeping the model
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm)

46

Regularization

48

Question:
Suppose we are minimizing J’(θ)
where

As λ increases, the minimum of J’(θ)
will move…

A. …towards the midpoint between
J’(θ) and r(θ)

B. …towards the minimum of J(θ)
C. …towards the minimum of r(θ)
D. …towards a theta vector of positive

infinities
E. …towards a theta vector of negative

infinities

Regularization Exercise
In-class Exercise
1. Plot train error vs. regularization weight (cartoon)
2. Plot test error vs . regularization weight (cartoon)

50

er
ro

r

regularization weight

Regularization

51

Question:
Suppose we are minimizing J’(θ)
where

As we increase λ from 0, the the
validation error will…

A. …increase
B. …decrease
C. …first increase, then decrease
D. …first decrease, then increase
E. …stay the same

Regularization

52

Don’t Regularize the Bias (Intercept) Parameter!
• In our models so far, the bias / intercept parameter is

usually denoted by !" -- that is, the parameter for which
we fixed #" = 1

• Regularizers always avoid penalizing this bias / intercept
parameter

• Why? Because otherwise the learning algorithms wouldn’t
be invariant to a shift in the y-values

Whitening Data
• It’s common to whiten each feature by subtracting its

mean and dividing by its variance
• For regularization, this helps all the features be penalized

in the same units
(e.g. convert both centimeters and kilometers to z-scores)

Example: Logistic Regression
• For this example, we

construct nonlinear features
(i.e. feature engineering)

• Specifically, we add
polynomials up to order 9 of
the two original features x1
and x2

• Thus our classifier is linear in
the high-dimensional
feature space, but the
decision boundary is
nonlinear when visualized in
low-dimensions (i.e. the
original two dimensions)

57

Training
Data

Test
Data

Example: Logistic Regression

58

1/lambda

er
ro

r

Example: Logistic Regression

59

Example: Logistic Regression

60

Example: Logistic Regression

61

Example: Logistic Regression

62

Example: Logistic Regression

63

Example: Logistic Regression

64

Example: Logistic Regression

65

Example: Logistic Regression

66

Example: Logistic Regression

67

Example: Logistic Regression

68

Example: Logistic Regression

69

Example: Logistic Regression

70

Example: Logistic Regression

71

Example: Logistic Regression

72

1/lambda

er
ro

r

Regularization as MAP

• L1 and L2 regularization can be interpreted
as maximum a-posteriori (MAP) estimation
of the parameters

• To be discussed later in the course…

73

Takeaways

1. Nonlinear basis functions allow linear
models (e.g. Linear Regression, Logistic
Regression) to capture nonlinear aspects of
the original input

2. Nonlinear features are require no changes
to the model (i.e. just preprocessing)

3. Regularization helps to avoid overfitting
4. Regularization and MAP estimation are

equivalent for appropriately chosen priors

75

Feature Engineering / Regularization
Objectives

You should be able to…
• Engineer appropriate features for a new task
• Use feature selection techniques to identify and

remove irrelevant features
• Identify when a model is overfitting
• Add a regularizer to an existing objective in order to

combat overfitting
• Explain why we should not regularize the bias term
• Convert linearly inseparable dataset to a linearly

separable dataset in higher dimensions
• Describe feature engineering in common application

areas

76

Neural Networks Outline

• Logistic Regression (Recap)
– Data, Model, Learning, Prediction

• Neural Networks
– A Recipe for Machine Learning
– Visual Notation for Neural Networks
– Example: Logistic Regression Output Surface
– 2-Layer Neural Network
– 3-Layer Neural Network

• Neural Net Architectures
– Objective Functions
– Activation Functions

• Backpropagation
– Basic Chain Rule (of calculus)
– Chain Rule for Arbitrary Computation Graph
– Backpropagation Algorithm
– Module-based Automatic Differentiation (Autodiff)

93

NEURAL NETWORKS

99

A Recipe for
Machine Learning

1. Given training data:

100

Background

2. Choose each of these:
– Decision function

– Loss function

Face Face Not a face

Examples: Linear regression,
Logistic regression, Neural Network

Examples: Mean-squared error,
Cross Entropy

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

101

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

102

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!

And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

103

Background

2. Choose each of these:

– Decision function

– Loss function

4. Train with SGD:

(take small steps
opposite the gradient)

Goals for Today’s Lecture

1. Explore a new class of decision functions
(Neural Networks)

2. Consider variants of this recipe for training

Linear Regression

104

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a

Logistic Regression

105

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

Logistic Regression

106

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

Face Face Not a face

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

Logistic Regression

107

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example

Perceptron

108

Decision
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + (�a)

