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Reminders

Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Wed, Sep. 18

— Due: Wed, Sep. 25 at 11:59pm

Midterm Exam 1

— Thu, Oct. 03, 6:30pm - 8:00pm
Homework 4: Logistic Regression

— Out: Wed, Sep. 25

— Due: Fri, Oct. 11 at 11:59pm
Today’s In-Class Poll

— http://p1o.mlcourse.org

Reading on Probabilistic Learning is reused later
in the course for MLE/MAP




MIDTERM EXAM LOGISTICS



Midterm Exam

 Time/Location
— Time: Evening Exam
Thu, Oct. 03 at 6:30pm - 8:00pm
— Room: We will contact each student individually with your room
assignment. The rooms are not based on section.
— Seats: There will be assigned seats. Please arrive early.

— Please watch Piazza carefully for announcements regarding room / seat
assignments.
* Logistics
— Covered material: Lecture 1 - Lecture 9
— Format of questions:
* Multiple choice
* True [ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back)



Midterm Exam

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review prior year’s exam and solutions
(we’ll post them)

— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section



Midterm Exam

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Midterm 1

* Foundations e (Classification
— Probability, Linear — Decision Tree
Algebra, Geometry, — KNN
Calculus — Perceptron

— Optimization :
* Regression

* Important Concepts — Linear Regression

— Overfitting
— Experimental Design



SAMPLE QUESTIONS



Sample Questions

1.4 Probability

Assume we have a sample space (). Answer each question with T or F.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

P(A)P(B|A)
P(A|B)

(b) [1 pts.] T or F: P(A|B) . (The sign ‘o’ means ‘is proportional to’)



Sample Questions




Sample Questions




Sample Questions

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D® and D® where DO = {(z\", y{"), .., @, yi")}
and D@ = {(? 4, . (@, y)} such that 2" € R%, 2/* € R%. Suppose d; > ds

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.



Sample Questions




Sample Questions




Sample Questions




Sample Questions

(a) Old and new regression lines. (b) Old and new regression lines. (c) Old and new regression lines.




Matching Game

Goal: Match the Algorithm to its Update Rule

1. SGD for Logistic Regression 4. 0, « 0, + (h@(X(i)) _ y(i))
he(x) = p(y|z)

2. Least Mean Squares 5. 0. B + 1
ho(x) = 6"x F T T exp Ao (x@) — y®)

3. Perceptron 6.

()Y _ ()Y, (D)
he(x) = sign(HTX) O < Ok + A(ho (X)) — 4™y,

A. 1=5, 2=4, 3=6 E. 1=6, 2=6, 3=6
B. 1=5, 2=6, 3=4 F.1=6, 2=5, 3=5
C.1=6, 2=4, 3=4 G. 1=5, 2=5, 3=5

D. 1=5, 2=6, 3=6 H. 1=4, 2=5, 3=6
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Q&A



PROBABILISTIC LEARNING



Maximum Likelihood Estimation
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Learning from Data (Frequentist)

Whiteboard

— Principle of Maximum Likelihood Estimation
(MLE)
— Strawmen:

* Example: Bernoulli
* Example: Gaussian

* Example: Conditional #1
(Bernoulli conditioned on Gaussian)

* Example: Conditional #2
(Gaussians conditioned on Bernoulli)



LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {x,yN wherex e RM andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



Linear Models for Classificatim

Key idea: Try to learn

this hyperplane directly
HOBIIME Einzaet = yDirectly modeling the
* We’ll see a number of =~
commonly used Linear |~ hyp.erplane W(.)u'd e e
Classifiers l -~ ldecision function:
* These include: = -
— Perceptron X h(X) — Sign(g X)

— Logistic Regression
— Naive Bayes (under
certain conditions) , for:

— Support Vector
Machines Y € {_1, _I_]-}

r pr—



Background: Hyperplanes%

Hyperplane (Definition 1):

H={x:w'x=0>b}
Hyperplane (Definition 2):
H={x:0"x=0
and Lo = 1}
0= bwy,...,wyl

T

Half-spaces:

Ht ={x:0"x>0andzy = 1}
H™ ={x:0"x<0andzy =1}



Using gradient ascent for linear

classifiers
Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Logistic Regression

Whiteboard

— Logistic Regression Model

— Learning for Logistic Regression
* Partial derivative for Logistic Regression
* Gradient for Logistic Regression



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

D = {x,yN wherex e RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1

pe(y = 1|x) =

1 + exp(—6"x)
Learning: finds the parameters that minimize some

objective function. @* — argmin .J(0)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
y€{0,1}



Logistic Regression
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Logistic Regression

Logistic Regression Distribution

41



Logistic Regression

Classification with Logistic Regression
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LEARNING LOGISTIC REGRESSION



Maximum Conditional
Likelihood Estimation

Learning: finds the parameters that minimize some
objective function.

0" = argmin J(0)
0
We minimize the negative log conditional likelihood:

N
J(6) = —log | [ pe(y"|x'"))
i=1
Why?
1.  We can’t maximize likelihood (as in Naive Bayes)

because we don’t have a joint model p(x,y)

It worked well for Linear Regression (least squares is
MCLE)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)



Maximum Conditional
Likelihood Estimation

Learning: Four approaches to solving 6" = argmin .J(0)
0

Approach 1: Gradient Descent
(take larger — more certain - steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

P . 77
(set derivatives equal to zero and solve




SGD for Logistic Regression

Question:

Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we...

A.

B.

C.

(1) compute the gradient of the log-likelihood for all examples (2) update all
the parameters using the gradient

(1) compute the gradient of the log-likelihood for all examples (2) randomly
pick an example (3) update only the parameters for that example

(1) randomly pick a parameter, (2) compute the partial derivative of the log-
likelihood with respect to that parameter, (3) update that parameter for all
examples

(1) ask Matt for a description of SGD for Logistic Regression, (2) write it down,
(3) report that answer

$1) randomly pick an example, (2) compute the gradient of the log-likelihood
or that example, (3) update all the parameters using that gradient

(1) randomly pick a parameter and an example, (2) compute the gradient of
the log-likelihood for that example with respect to that parameter, (3) update
that parameter using that gradient



Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 9(0))

1:

2 6 — 09

3: while not converged do
4 00— \VoJ(0)

5 return 0

In order to apply GD to Logistic
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).




Stochastic Gradient Descent (Sm

Algorithm 1 Stochastic Gradient Descent (SG D)
procedure SGD(D, 6'”))
9 0

1:
2
3: while not converged do

4: fori € shuffle({1,2,...,N}) do
5:

6

0 — 60 \VeJW(0)
return @

We can also apply SGD to solve the MCLE
problem for Logistic Regression.

We need a per-example objective:
Let J(0) = 30,0, JD(6)
where J(9(0) = — log pe (y*|x?).



Logistic Regression vs. Perceptron

Question:

True or False: Just like Perceptron, one

step (i.e. iteration) of SGD for Logistic
Regression will result in a change to the N 4
parameters only if the current example is

incorrectly classified. +

+
T %
+

Answer: 4+ +




Summary

1. Discriminative classifiers directly model the
conditional, p(y|x)

2. Logistic regression is a simple linear
classifier, that retains a probabilistic
semantics

3. Parameters in LR are learned by iterative
optimization (e.g. SGD)




Logistic Regression Objectives

You should be able to...

Apply the principle of maximum likelihood estimation (MLE) to
learn the parameters of a probabilistic model

Given a discriminative probabilistic model, derive the conditional
log-likelihood, its gradient, and the corresponding Bayes
Classifier

Explain the practical reasons why we work with the log of the
likelihood

Implement logistic regression for binary or multiclass
classification

Prove that the decision boundary of binary logistic regression is
linear

For linear regression, show that the parameters which minimize
squared error are equivalent to those that maximize conditional
likelihood



