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Reminders
• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Wed, Sep. 18
– Due: Wed, Sep. 25 at 11:59pm

• Midterm Exam 1
– Thu, Oct. 03, 6:30pm – 8:00pm

• Homework 4: Logistic Regression
– Out: Wed, Sep. 25
– Due: Fri, Oct. 11 at 11:59pm

• Today’s In-Class Poll
– http://p10.mlcourse.org

• Reading on Probabilistic Learning is reused later
in the course for MLE/MAP
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MIDTERM EXAM LOGISTICS
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Midterm Exam
• Time / Location

– Time: Evening Exam
Thu, Oct. 03 at 6:30pm – 8:00pm

– Room: We will contact each student individually with your room 
assignment. The rooms are not based on section. 

– Seats: There will be assigned seats. Please arrive early. 
– Please watch Piazza carefully for announcements regarding room / seat 

assignments.

• Logistics
– Covered material: Lecture 1 – Lecture 9
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back)
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Midterm Exam

• How to Prepare
– Attend the midterm review lecture

(right now!)
– Review prior year’s exam and solutions

(we’ll post them)
– Review this year’s homework problems
– Consider whether you have achieved the 

“learning objectives” for each lecture / section
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Midterm Exam
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Midterm 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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SAMPLE QUESTIONS
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Sample Questions
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1.3 MAP vs MLE

Answer each question with T or F and provide a one sentence explanation of your
answer:

(a) [2 pts.] T or F: In the limit, as n (the number of samples) increases, the MAP and
MLE estimates become the same.

(b) [2 pts.] T or F: Naive Bayes can only be used with MAP estimates, and not MLE
estimates.

1.4 Probability

Assume we have a sample space ⌦. Answer each question with T or F. No justification
is required.

(a) [1 pts.] T or F: If events A, B, and C are disjoint then they are independent.

(b) [1 pts.] T or F: P (A|B) / P (A)P (B|A)
P (A|B)

. (The sign ‘/’ means ‘is proportional to’)

(c) [1 pts.] T or F: P (A [ B)  P (A).

(d) [1 pts.] T or F: P (A \ B) � P (A).
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Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classifi-
cation task. We assign the class of the test point to be the class of the majority of the
k nearest neighbors. A point can be its own neighbor.

Figure 5

3. [2 pts] What value of k minimizes leave-one-out cross-validation error for the dataset
shown in Figure 5? What is the resulting error?

4. [2 pts] Sketch the 1-nearest neighbor boundary over Figure 5.

5. [2 pts] What value of k minimizes the training set error for the dataset shown in
Figure 5? What is the resulting training error?

10-701 Machine Learning Midterm Exam - Page 7 of 17 11/02/2016

4 K-NN [12 pts]

In this problem, you will be tested on your knowledge of K-Nearest Neighbors (K-NN), where
k indicates the number of nearest neighbors.

1. [3 pts] For K-NN in general, are there any cons of using very large k values? Select
one. Briefly justify your answer.

(a) Yes (b) No

2. [3 pts] For K-NN in general, are there any cons of using very small k values? Select
one. Briefly justify your answer.

(a) Yes (b) No
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4 SVM, Perceptron and Kernels [20 pts. + 4 Extra Credit]

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D(1) and D(2) where D(1) = {(x(1)
1 , y

(1)
1 ), ..., (x(1)

n , y
(1)
n )}

and D(2) = {(x(2)
1 , y

(2)
1 ), ..., (x(2)

m , y
(2)
m )} such that x(1)

i 2 Rd1 , x(2)
i 2 Rd2 . Suppose d1 > d2

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D(1) than on dataset D(2).

(b) [2 pts.] Suppose �(x) is an arbitrary feature mapping from input x 2 X to �(x) 2 RN

and let K(x, z) = �(x) · �(z). Then K(x, z) will always be a valid kernel function.

(c) [2 pts.] Given the same training data, in which the points are linearly separable, the
margin of the decision boundary produced by SVM will always be greater than or equal
to the margin of the decision boundary produced by Perceptron.

4.2 Multiple Choice

(a) [3 pt.] If the data is linearly separable, SVM minimizes kwk2 subject to the constraints
8i, yiw · xi � 1. In the linearly separable case, which of the following may happen to the
decision boundary if one of the training samples is removed? Circle all that apply.

• Shifts toward the point removed

• Shifts away from the point removed

• Does not change

(b) [3 pt.] Recall that when the data are not linearly separable, SVM minimizes kwk2 +
C
P

i ⇠i subject to the constraint that 8i, yiw · xi � 1 � ⇠i and ⇠i � 0. Which of the
following may happen to the size of the margin if the tradeo↵ parameter C is increased?
Circle all that apply.

• Increases

• Decreases

• Remains the same
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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(a) Adding one outlier to the

original data set.

(b) Adding two outliers to the original data

set.

(c) Adding three outliers to the original data

set. Two on one side and one on the other

side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and

adding four points that lie on the trajectory

of the original regression line.

Figure 3: New data set Snew.

Dataset
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Matching Game

Goal: Match the Algorithm to its Update Rule
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1. SGD for Logistic Regression

2. Least Mean Squares

3. Perceptron

4.

5.

6.

�k � �k +
1

1 + exp �(h�(x(i)) � y(i))

�k � �k + (h�(x(i)) � y(i))

�k � �k + �(h�(x(i)) � y(i))x(i)
k

h�(x) = p(y|x)

h�(x) = �T x

h�(x) = sign(�T x)

A. 1=5, 2=4, 3=6
B. 1=5, 2=6, 3=4
C. 1=6, 2=4, 3=4
D. 1=5, 2=6, 3=6

E. 1=6, 2=6, 3=6
F. 1=6, 2=5, 3=5
G. 1=5, 2=5, 3=5
H. 1=4, 2=5, 3=6



Q&A
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PROBABILISTIC LEARNING
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Maximum Likelihood Estimation
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Learning from Data (Frequentist)

Whiteboard
– Principle of Maximum Likelihood Estimation 

(MLE)
– Strawmen:
• Example: Bernoulli
• Example: Gaussian
• Example: Conditional #1 

(Bernoulli conditioned on Gaussian)
• Example: Conditional #2

(Gaussians conditioned on Bernoulli)
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LOGISTIC REGRESSION
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Logistic Regression

32

We are back to 
classification.

Despite the name 
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h( ) = sign(�T )

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines

Recall…



Background: Hyperplanes

H = {x : wT x = b}
Hyperplane (Definition 1): 

w

Hyperplane (Definition 2): 

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

Recall…



Using gradient ascent for linear 
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn 

parameters
4. Predict the class with highest probability under 

the model
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Using gradient ascent for linear 
classifiers

36

Use a differentiable 
function instead:

logistic(u) ≡ 1
1+ e−u

p�(y = 1| ) =
1

1 + (��T )

This decision function isn’t 
differentiable:

sign(x)

h( ) = sign(�T )
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Logistic Regression

Whiteboard
– Logistic Regression Model
– Learning for Logistic Regression
• Partial derivative for Logistic Regression
• Gradient for Logistic Regression
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Logistic Regression
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Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ =

y�{0,1}
p�(y| )

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1| ) =
1

1 + (��T )

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Logistic Regression
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Logistic Regression
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Logistic Regression
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LEARNING LOGISTIC REGRESSION
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Maximum Conditional
Likelihood Estimation
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Learning: finds the parameters that minimize some 
objective function.

We minimize the negative log conditional likelihood:

Why?
1. We can’t maximize likelihood (as in Naïve Bayes) 

because we don’t have a joint model p(x,y)
2. It worked well for Linear Regression (least squares is 

MCLE)

�� = argmin
�

J(�)

J(�) = �
N�

i=1

p�(y(i)| (i))



Maximum Conditional
Likelihood Estimation
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Learning: Four approaches to solving 

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)
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Learning: Four approaches to solving 

Approach 1: Gradient Descent
(take larger – more certain – steps opposite the gradient)

Approach 2: Stochastic Gradient Descent (SGD)
(take many small steps opposite the gradient)

Approach 3: Newton’s Method
(use second derivatives to better follow curvature)

Approach 4: Closed Form???
(set derivatives equal to zero and solve for parameters)

�� = argmin
�

J(�)

Logistic Regression does not 
have a closed form solution 
for MLE parameters.



SGD for Logistic Regression
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Question: 
Which of the following is a correct description of SGD for Logistic Regression?

Answer:
At each step (i.e. iteration) of SGD for Logistic Regression we…
A. (1) compute the gradient of the log-likelihood for all examples (2) update all 

the parameters using the gradient
B. (1) compute the gradient of the log-likelihood for all examples (2) randomly 

pick an example (3) update only the parameters for that example
C. (1) randomly pick a parameter, (2) compute the partial derivative of the log-

likelihood with respect to that parameter, (3) update that parameter for all 
examples

D. (1) ask Matt for a description of SGD for Logistic Regression, (2) write it down, 
(3) report that answer

E. (1) randomly pick an example, (2) compute the gradient of the log-likelihood 
for that example, (3) update all the parameters using that gradient

F. (1) randomly pick a parameter and an example, (2) compute the gradient of 
the log-likelihood for that example with respect to that parameter, (3) update 
that parameter using that gradient



Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Gradient Descent
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In order to apply GD to Logistic 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

Recall…



Stochastic Gradient Descent (SGD)
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Recall…

We need a per-example objective:

We can also apply SGD to solve the MCLE 
problem for Logistic Regression.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = � p�(yi| i).

—



Answer:

Logistic Regression vs. Perceptron
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Question:
True or False: Just like Perceptron, one 
step (i.e. iteration) of SGD for Logistic 
Regression will result in a change to the 
parameters only if the current example is 
incorrectly classified.



Summary

1. Discriminative classifiers directly model the 
conditional, p(y|x)

2. Logistic regression is a simple linear 
classifier, that retains a probabilistic 
semantics

3. Parameters in LR are learned by iterative 
optimization (e.g. SGD)
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Logistic Regression Objectives
You should be able to…
• Apply the principle of maximum likelihood estimation (MLE) to 

learn the parameters of a probabilistic model
• Given a discriminative probabilistic model, derive the conditional 

log-likelihood, its gradient, and the corresponding Bayes 
Classifier

• Explain the practical reasons why we work with the log of the 
likelihood

• Implement logistic regression for binary or multiclass 
classification

• Prove that the decision boundary of binary logistic regression is 
linear

• For linear regression, show that the parameters which minimize 
squared error are equivalent to those that maximize conditional 
likelihood
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