

#### 10-423/10-623 Generative Al

Machine Learning Department School of Computer Science Carnegie Mellon University

# Generative Adversarial Networks (GANs) + Probabilistic Graphical Models

Aran Nayebi & Matt Gormley Lecture 6 Sep. 15, 2025

#### Reminders

- Homework 1: Generative Models of Text
  - Out: Mon, Sep 8
  - Due: Mon, Sep 22 at 11:59pm
- Quiz 2 now on Wed, Sep 24!

#### **TASK: IMAGE GENERATION**

## Image Generation

- Class-conditional generation
- Super resolution
- Image Editing
- Style transfer
- Text-to-image (TTI) generation

sea anemone

brain coral

slug

goldfinch



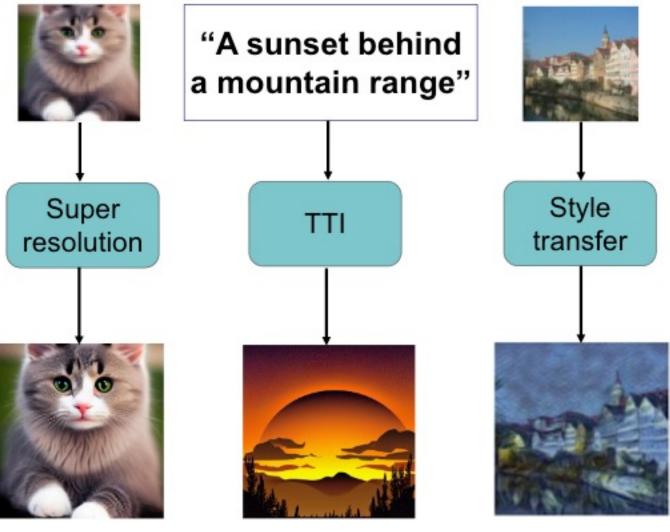


Figure from Razavi et al. (2019)

Figure from Bie et al. (2023)

#### Class Conditional Generation

- Task: Given a class label indicating the image type, sample a new image from the model with that type
- Image classification is the problem of taking in an image and predicting its label p(y|x)
- Class conditional generation is doing this in reverse p(x|y)

sea anemone

brain coral

slug

goldfinch



## Super Resolution



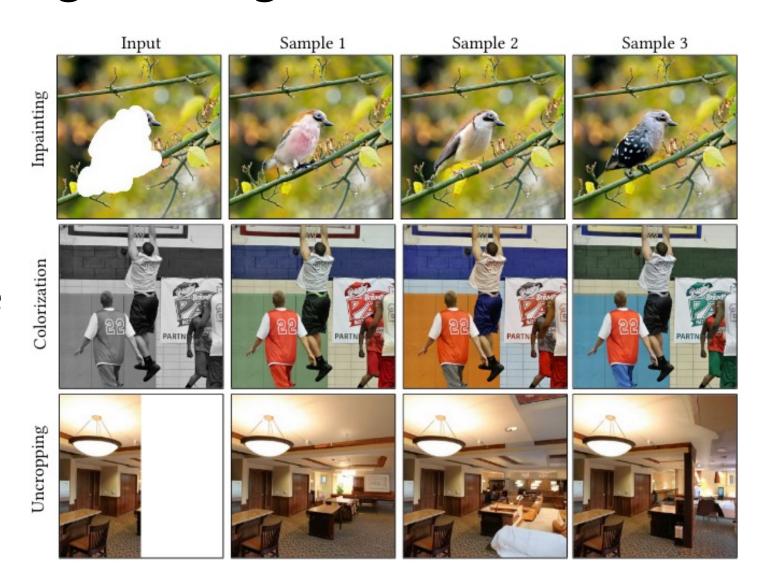
- Given a low resolution image, generate a high resolution reconstruction of the image
- Compelling on low resolution inputs (see example to the left) but also effective on high resolution inputs

SRDiff

## Image Editing

A variety of tasks involve automatic editing of an image:

- Inpainting fills in the (prespecified) missing pixels
- Colorization restores color to a greyscale image
- Uncropping creates a photo-realistic reconstruction of a missing side of an image



## Style Transfer

- B





- The goal of style transfer is to blend two images
- Yet, the blend should retain the semantic content of the source image presented in the style of another image





Figure 3. Images that combine the content of a photograph with the style of several well-known artworks. The images were created by finding an image that simultaneously matches the content representation of the photograph and the style representation of the artwork. The original photograph depicting the Neckarfront in Tübingen, Germany, is shown in **A** (Photo: Andreas Praefcke). The painting that provided the style for the respective generated image is shown in the bottom left corner of each panel. **B** The Shipwreck of the Minotaur by J.M.W. Turner, 1805. **C** The Starry Night by Vincent van Gogh, 1889. **D** Der Schrei by Edvard Munch, 1893. **E** Femme nue assise by Pablo Picasso, 1910. **F** Composition VII by Wassily Kandinsky, 1913.

## Text-to-Image Generation

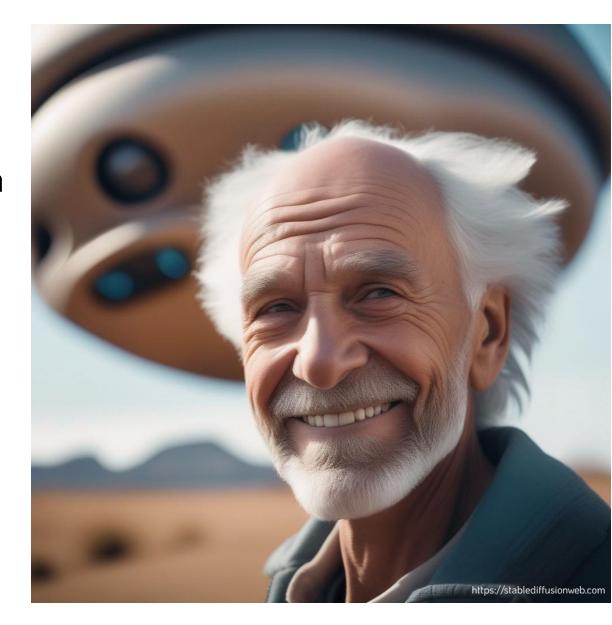
- Given a text description, sample an image that depicts the prompt
- From Google Gemini 2.5 Flash Image (Nano Banana)



## Text-to-Image Generation

- Given a text description, sample an image that depicts the prompt
- The following images are samples from SDXL with refinement

Prompt: close up headshot, futuristic **old man**, wild hair sly smile in front of gigantic UFO, dslr, sharp focus, dynamic composition, **rule of thirds** 

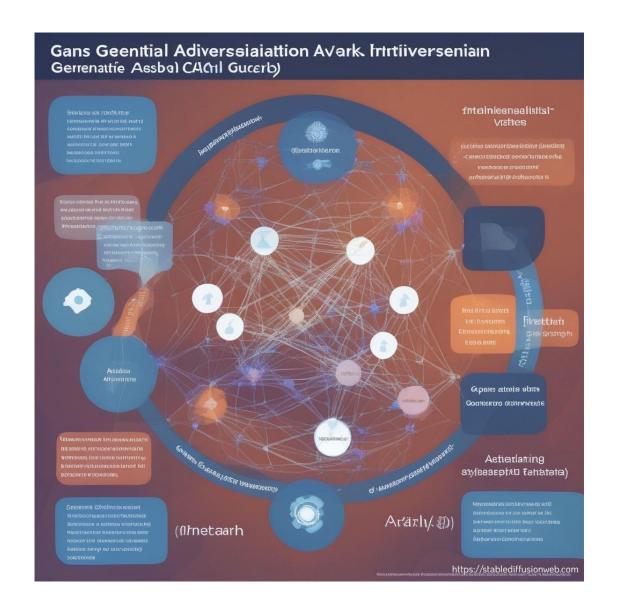


# MODEL: GENERATIVE ADVERSARIAL NETWORK (GAN)

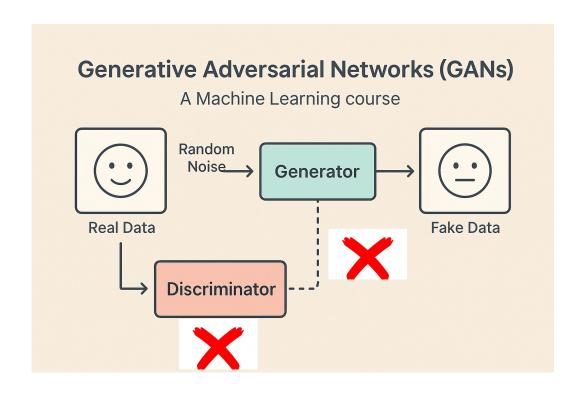
## Stable Diffusion (Spring 2025) still can't explain GANs

Prompt: slide explaining
Generative Adversarial
Networks (GANs) for a
Machine Learning course,
carefully designed, easy to
follow

Negative Prompt: boring, unclear, nontechnical



### GPT5 (Fall 2025) does a better (but incorrect!) job at explaining GANs



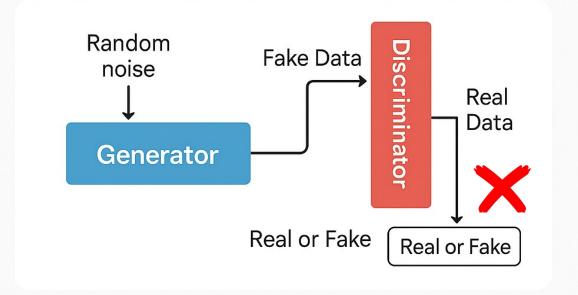
Prompt: Generate a slide (as an image) explaining Generative Adversarial Networks (GANs) for a Machine Learning course, carefully designed, easy to follow

Negative Prompt: boring, unclear, nontechnical

## Generative Adversarial Networks (GANs)

A GAN consists of two neural networks:

- Generator: produces fake data
- Discriminator: distinguishes real and fake data



A GAN consists of two deterministic neural network models:

#### 1) the Generator

takes a vector of random noise as input, and generates an image

#### 2) the Discriminator

takes in an image classifies whether it is real (label 1) or fake (label 0)

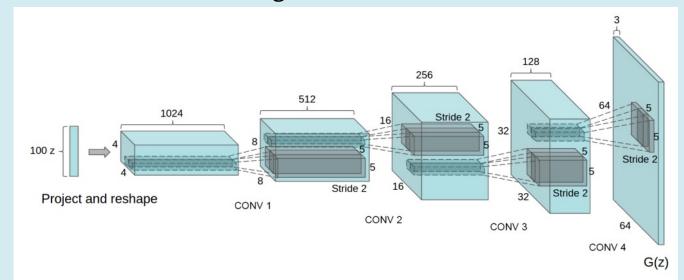
#### **Generator Model**

#### 1) the Generator

takes a vector of random noise as input, and generates an image

#### **Example Generator: DCGAN**

- An inverted CNN with four fractionallystrided convolution layers (not deconvolution)
- These fractional strides grow the size of the image from layer to layer
- The final layer has three channels for red/green/blue



A GAN consists of two deterministic neural network models:

#### 1) the Generator

takes a vector of random noise as input, and generates an image

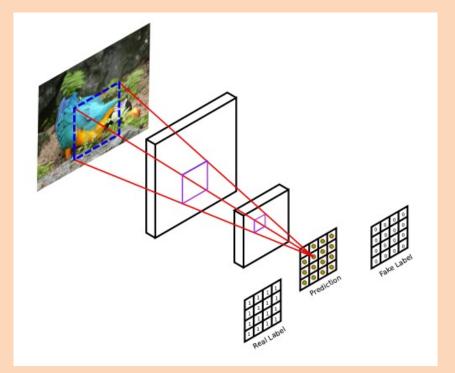
#### 2) the Discriminator

takes in an image classifies whether it is real (label 1) or fake (label 0)

#### Discriminator Model

#### **Example Discriminator: PatchGAN**

- Convolutional neural network
- Looks at each patch of the image and tries to predict whether it is real or fake
- Helps avoid producing blurry images



#### 2) the Discriminator

takes in an image classifies whether it is real (label 1) or fake (label 0)

A GAN consists of two deterministic neural network models:

#### 1) the Generator

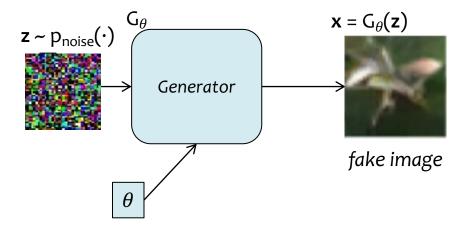
takes a vector of random noise as input, and generates an image

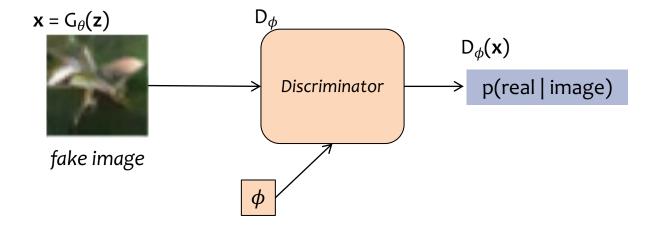
#### 2) the Discriminator

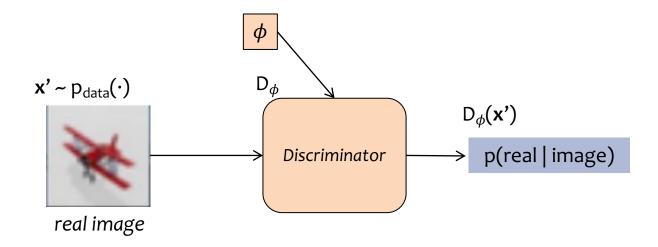
takes in an image classifies whether it is real (label 1) or fake (label 0)

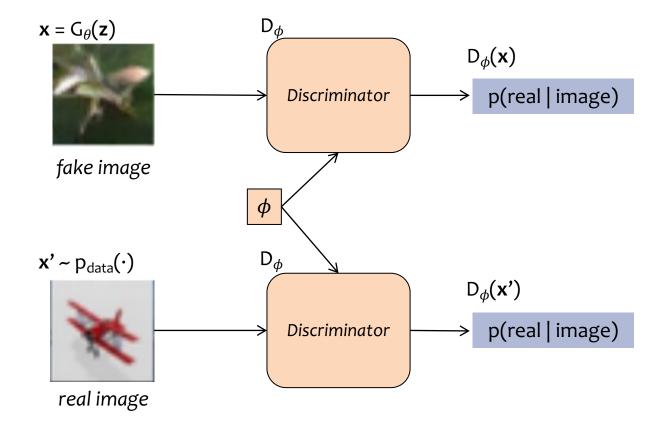
In training, the GAN plays a two player minimax game:

- 1. the Generator tries to create realistic images to fool the Discriminator into thinking they are real
- 2. the Discriminator tries to identify the real images from the fake









#### **LEARNING FOR GANS**

A GAN consists of two deterministic neural network models:

#### 1) the Generator

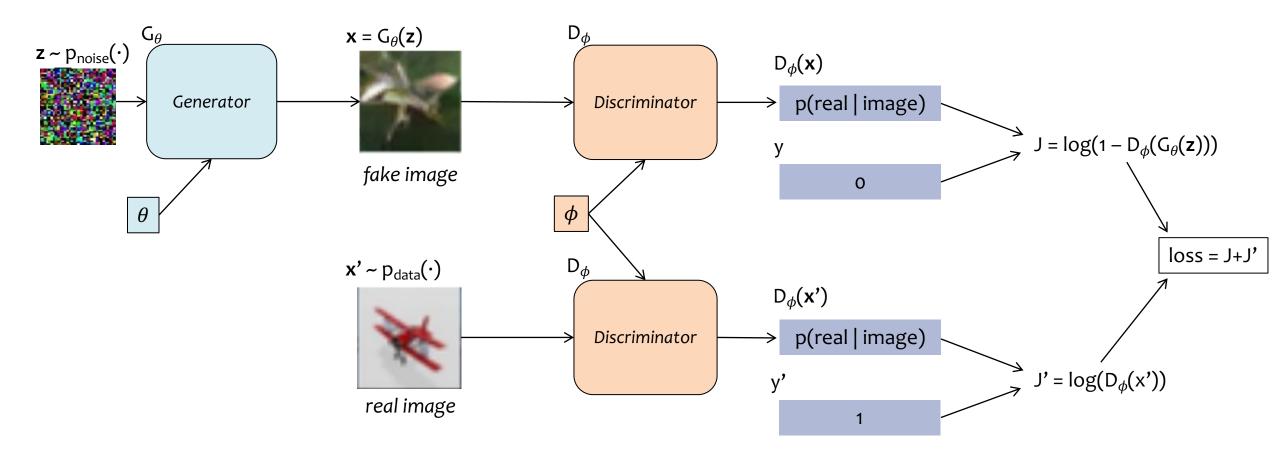
takes a vector of random noise as input, and generates an image

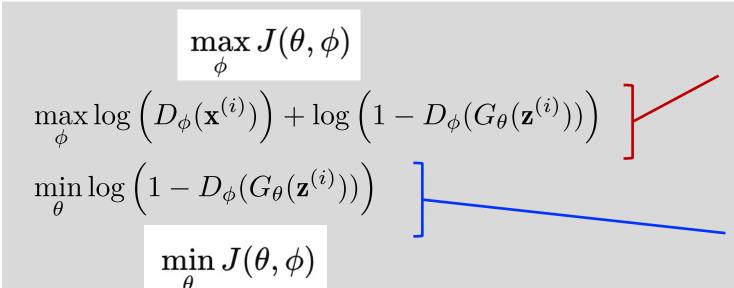
#### 2) the Discriminator

takes in an image classifies whether it is real (label 1) or fake (label 0)

In training, the GAN plays a two player minimax game:

- 1. the Generator tries to create realistic images to fool the Discriminator into thinking they are real
- 2. the Discriminator tries to identify the real images from the fake





The discriminator is trying to maximize the likelihood of a binary classifier with labels {real = 1, fake = 0}, on the fixed output of the generator

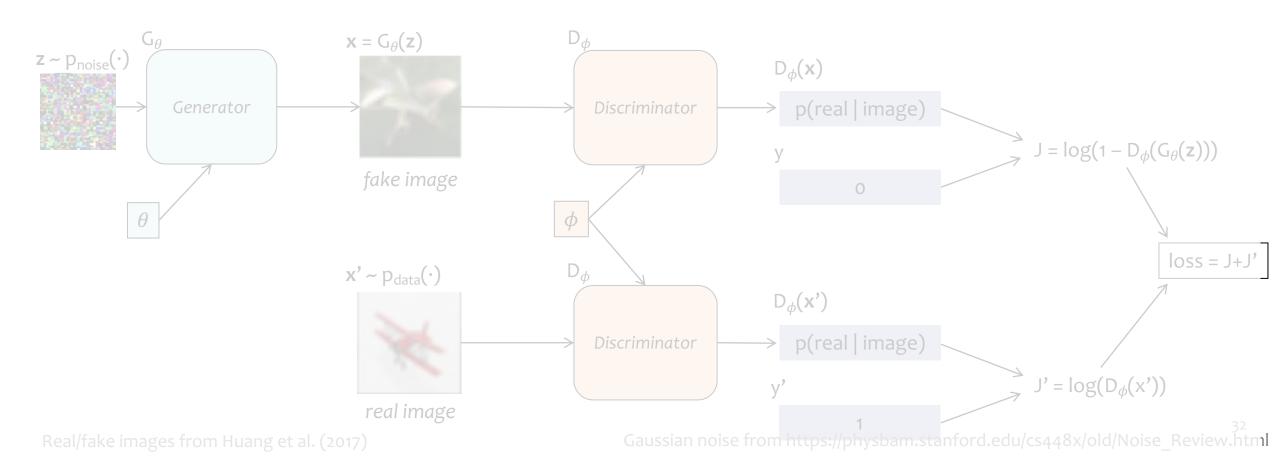
The generator is trying to minimize the likelihood of its generated (fake) image being classified as fake, according to a fixed discriminator

In training, the GAN plays a two player minimax game:

- 1. the Generator tries to create realistic images to fool the Discriminator into thinking they are real
- 2. the Discriminator tries to identify the real images from the fake

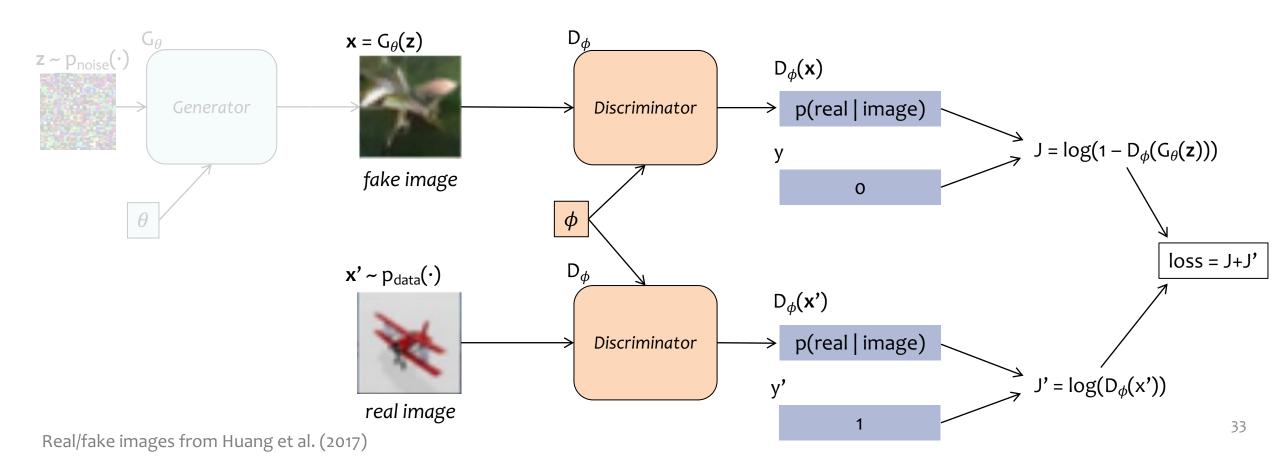
- Objective function is a simple differentiable function
- We chose G and D to be differentiable neural networks

- Keep  $G_{\theta}$  fixed and backprop through  $D_{\phi}$
- Keep  $D_{\phi}$  fixed and backprop through  $G_{\theta}$



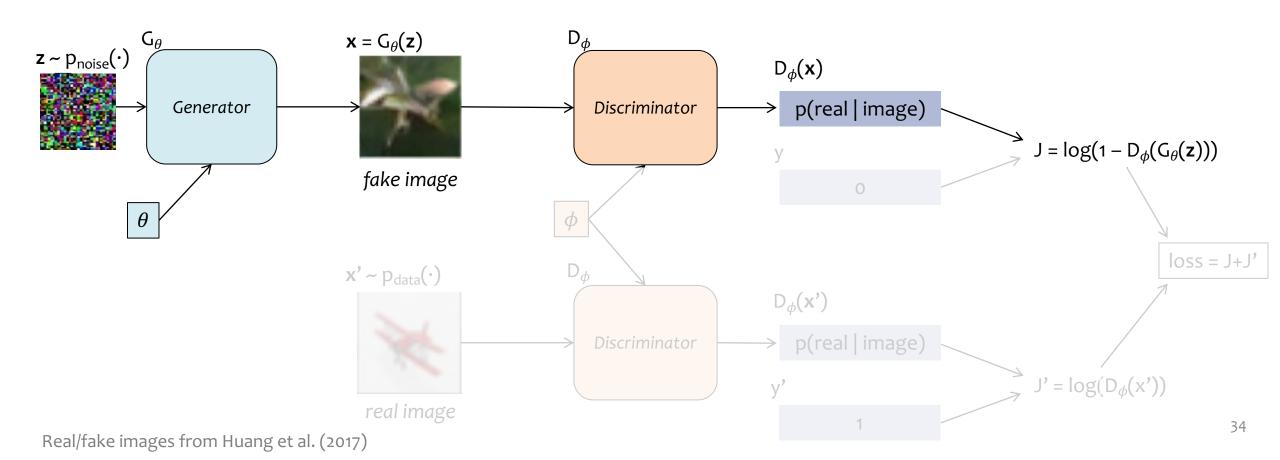
- Objective function is a simple differentiable function
- We chose G and D to be differentiable neural networks

- Keep  $G_{ heta}$  fixed and backprop through  $D_{\phi}$
- Keep  $D_{\phi}$  fixed and backprop through  $G_{\theta}$



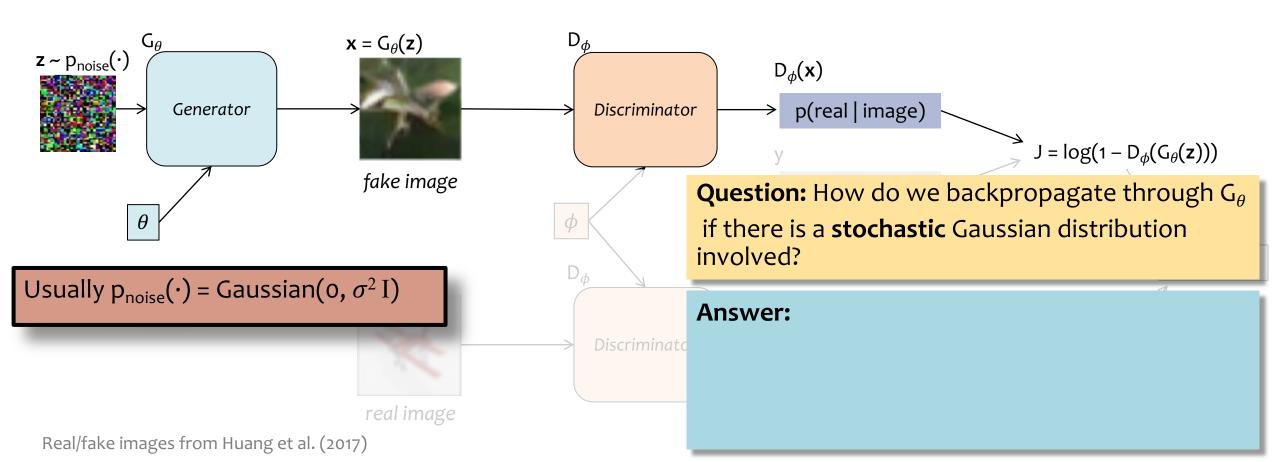
- Objective function is a simple differentiable function
- We chose G and D to be differentiable neural networks

- Keep  $G_{\theta}$  fixed and backprop through  $D_{\phi}$
- Keep  $D_{\phi}$  fixed and backprop through  $G_{\theta}$



- Objective function is a simple differentiable function
- We chose G and D to be differentiable neural networks

- Keep  $\mathsf{G}_{ heta}$  fixed and backprop through  $\mathsf{D}_{\phi}$
- Keep  $D_{\phi}$  fixed and backprop through  $G_{\theta}$



- Training data
   consists of a
   collection of m
   unlabeled images
   x<sup>(1)</sup>, ..., x<sup>(m)</sup>
- Optimization is similar to block coordinate descent
- But instead of exactly solving the min/max problem, we take a step of mini-batch SGD

**Algorithm 1** Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

#### for k steps do

- Sample minibatch of m noise samples  $\{z^{(1)}, \ldots, z^{(m)}\}$  from noise prior  $p_g(z)$ .
- Sample minibatch of m examples  $\{x^{(1)}, \dots, x^{(m)}\}$  from data generating distribution  $p_{\text{data}}(x)$ .
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[ \log D\left( \boldsymbol{x}^{(i)} \right) + \log \left( 1 - D\left( G\left( \boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

#### end for

- Sample minibatch of m noise samples  $\{z^{(1)}, \ldots, z^{(m)}\}$  from noise prior  $p_g(z)$ .
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left( 1 - D \left( G \left( \boldsymbol{z}^{(i)} \right) \right) \right).$$

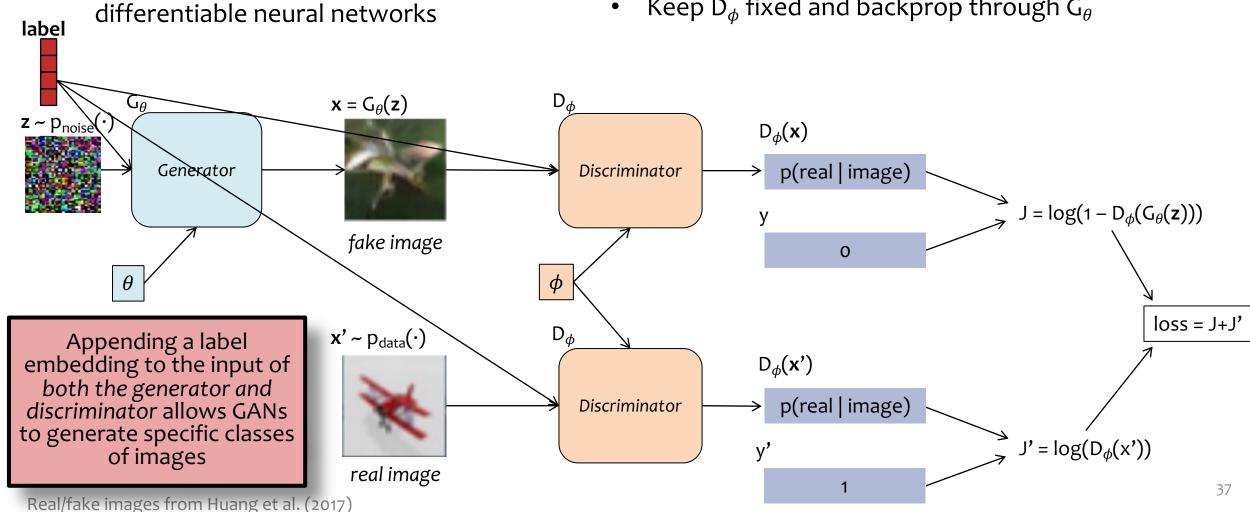
#### end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

#### Class-conditional GANs

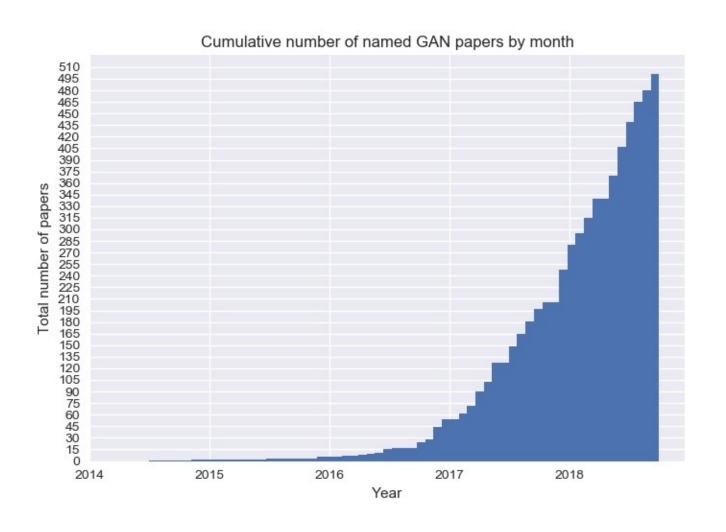
- Objective function is a simple differentiable function
- We chose G and D to be

- Keep  $G_{\theta}$  fixed and backprop through  $D_{\phi}$
- Keep  $D_{\phi}$  fixed and backprop through  $G_{\theta}$

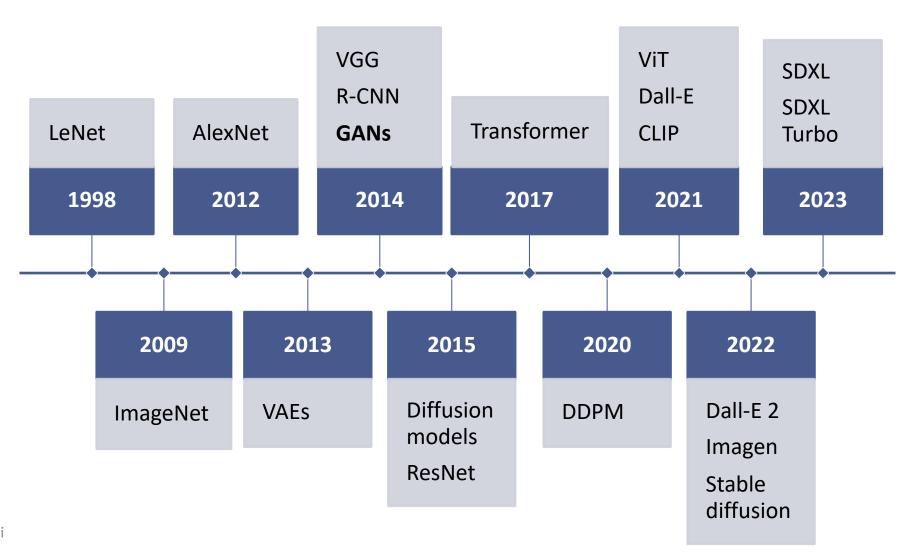


## SCALING UP THE MODEL SIZE

## GANs Everywhere!



## Recall: Computer Vision Timeline



# GANs vs. Diffusion



GAN generated images

Training images

Diffusion generated images

# Scaling Up the Model Size

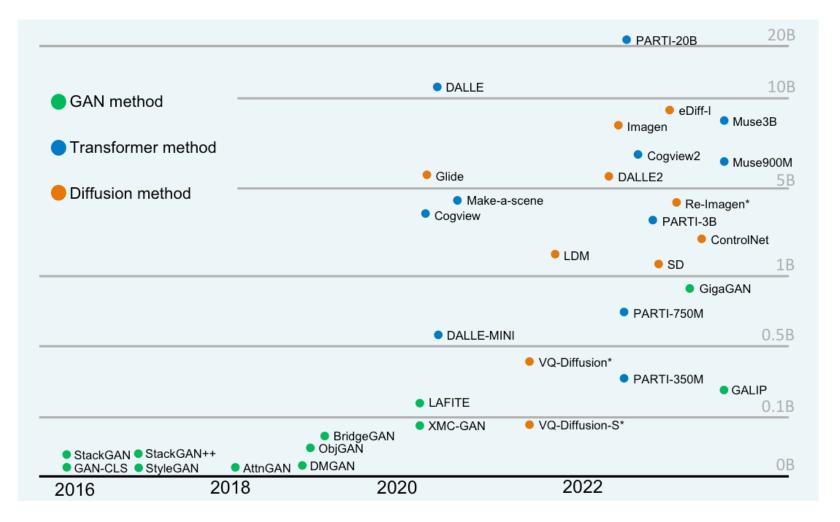


Fig. 5. Timeline of TTI model development, where green dots are GAN TTI models, blue dots are autoregressive Transformers and orange dots are Diffusion TTI models. Models are separated by their parameter, which are in general counted for all their components. Models with asterisk are calculated without the involvement of their text encoders.

# Scaling Up the Model Size

**Prompt:** A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

Parti with different model sizes



# Watermarking & Attribution

#### Watermarking

- A digital watermark allows one to identify when an image has been created by a model
- Most methods for image generation (GANs, VAEs, stable diffusion) can be augmented with watermarking

#### Fake-image Detection

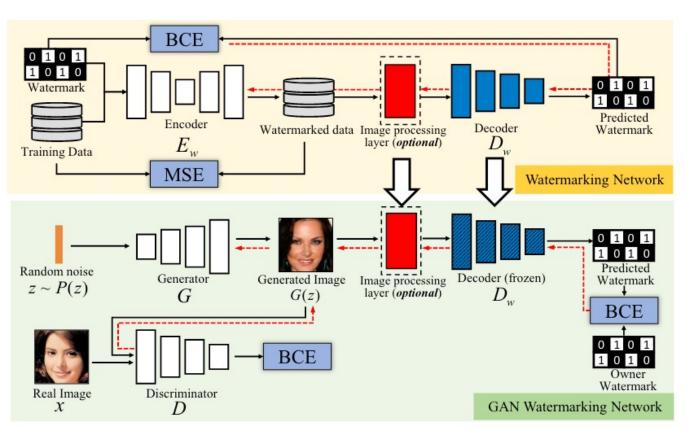
 Goal: identify fakes even without a watermark

#### Model Attribution

- Identify which generative model created an image (e.g. Dalle-2 vs. SDXL)
- Very successful (natural watermarks)

#### Image Attribution

- Goal: identify the source images that led to the generation of a new image
- Extremely challenging



# Societal Impacts of Image Generation

#### **Pros**

- New tools for artists
- Faster creation of memes

#### Cons

- Copyright infringement / loss of work for artists
- Societal decrease in creativity
- Potential to create dehumanizing content
- Fake news / false realities / increased difficulty of fact checking
- Not rooted in reality

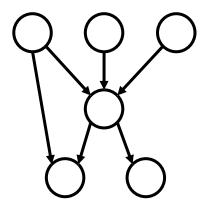
### DIRECTED GRAPHICAL MODEL

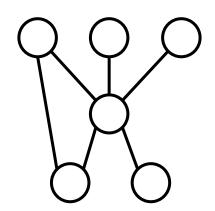
# Three Types of Graphical Models

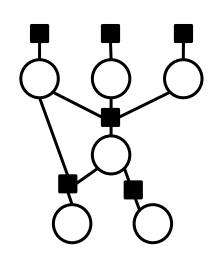
Directed Graphical Model

Undirected Graphical Model

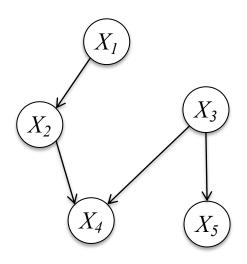
Factor Graph







#### **Example**



$$P(X_1, X_2, X_3, X_4, X_5) =$$

$$P(X_5 \mid X_3)P(X_4 \mid X_2, X_3)$$

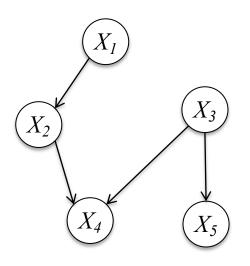
$$P(X_3)P(X_2 \mid X_1)P(X_1)$$

#### **Definition**

- A directed graphical model (aka. Bayesian network) is a **directed acyclic graph** that represents the conditional independencies of a set of variables  $X_1, ..., X_T$
- Each **node** is variable  $X_t$  and each **edge** implies a directional influence between a pair of variables
- The DGM factorizes the joint distribution over the variables as a product of conditional probabilities:

$$P(X_1, \dots, X_T) = \prod_{t=1}^T P(X_t \mid \mathsf{parents}(X_t))$$

#### Example



the graph (qualitative specification) could be:

- specified using domain expertise about causal relationships
- learned from data
- chosen because of nice computational properties

$$p(x_1, x_2, x_3, x_4, x_5) =$$

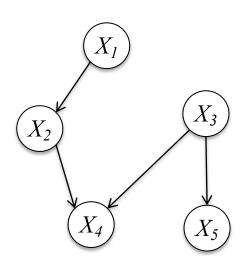
$$p(x_5 \mid x_3)p(x_4 \mid x_2, x_3)$$

$$p(x_3)p(x_2 \mid x_1)p(x_1)$$

the conditional probabilities (quantitative specification) is:

- depends on the types of variables involved
- typically learned from data

### Example



$$p(x_1, x_2, x_3, x_4, x_5) = p(x_5 \mid x_3)p(x_4 \mid x_2, x_3) p(x_3)p(x_2 \mid x_1)p(x_1)$$

#### **Quantitative Specification**

| $x_1$ | $p(x_1)$ |
|-------|----------|
| red   | 0.4      |
| blue  | 0.6      |

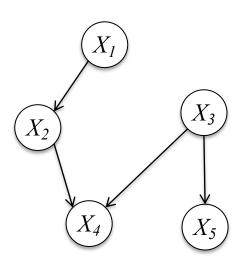
| $x_2$ | $x_1$ | $p(x_2 \mid x_1)$ |
|-------|-------|-------------------|
| red   | red   | 0.7               |
| blue  | red   | 0.3               |
| red   | blue  | 0.5               |
| blue  | blue  | 0.5               |

| $x_3$ | $p(x_3)$ |
|-------|----------|
| red   | 0.6      |
| blue  | 0.4      |

| $x_4$ | $x_2$ | $x_3$ | $p(x_4 \mid x_2, x_3)$ |
|-------|-------|-------|------------------------|
| red   | red   | red   | 0.5                    |
| blue  | red   | red   | 0.5                    |
| red   | red   | blue  | 0.8                    |
| blue  | red   | blue  | 0.2                    |
| red   | blue  | red   | 0.6                    |
| blue  | blue  | red   | 0.4                    |
| red   | blue  | blue  | 0.3                    |
| blue  | blue  | blue  | 0.7                    |

| $x_5$ | $x_3$ | $p(x_5 \mid x_3)$ |
|-------|-------|-------------------|
| red   | red   | 0.7               |
| blue  | red   | 0.3               |
| red   | blue  | 0.4               |
| blue  | blue  | 0.6               |

#### **Example**



$$p(x_1, x_2, x_3, x_4, x_5) = p(x_5 \mid x_3)p(x_4 \mid x_2, x_3) p(x_3)p(x_2 \mid x_1)p(x_1)$$

**Quantitative Specification** 

If each variable is continuous, we could define Gaussian conditional distributions

$$x_1 \sim \mathcal{N}(\mu_1, \sigma_1)$$
  
 $x_2 \sim \mathcal{N}(x_1, \sigma_2)$ 

$$x_3 \sim \mathcal{N}(\mu_3, \sigma_3)$$

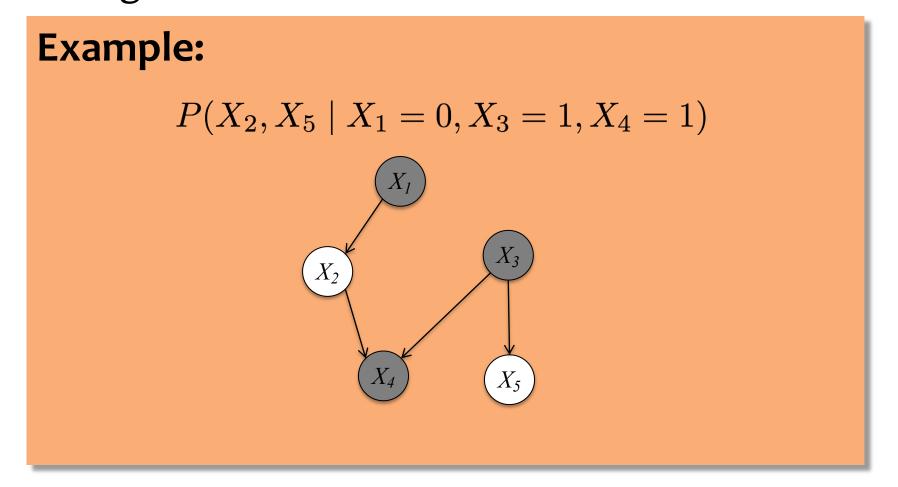
$$x_4 \sim \mathcal{N}(x_2 + x_3, \sigma_4)$$

$$x_5 \sim \mathcal{N}(x_3, \sigma_5)$$



### **Observed Variables**

• In a graphical model, **shaded nodes** are "**observed**", i.e. their values are given



### **MARKOV MODEL**

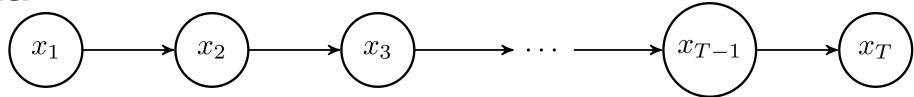
### Markov Model

1. 1<sup>st</sup>-order Markov assumption:

for a sequence of random variables, the probability distribution over  $x_t$  random variables is conditionally independent of  $x_1, \ldots, x_{t-2}$  given  $x_{t-1}$ 

 $p(x_t \mid x_1, \dots, x_{t-1}) = p(x_t \mid x_{t-1})$ 

- 2. 1<sup>st</sup>-order Markov model: defines a joint distribution over a sequence of variables using a Markov assumption
- $p(x_1, \dots, x_T) = p(x_1) \prod_{t=2}^{T} p(x_t \mid x_{t-1})$
- 3. We can represent the Markov model as a directed graphical model



### In-class Exercise: RNN-LM as a DGM

Given a five-word sequence,  $[w_1, w_2, w_3, w_4, w_5]$ , how could we represent the implied probability distributions of an RNN-LM as a directed graphical model?





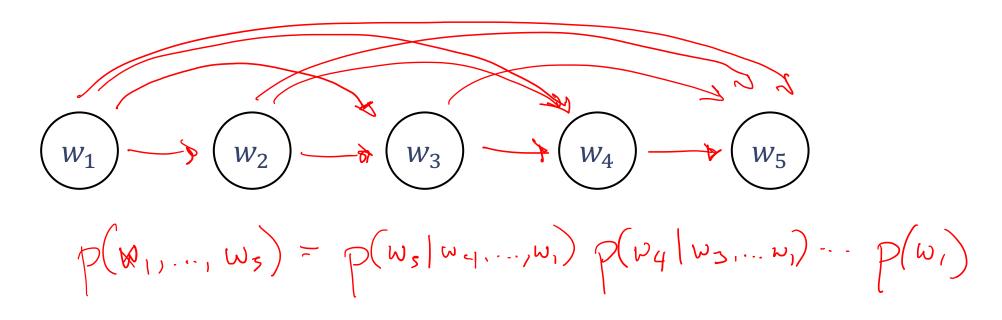






### In-class Exercise: RNN-LM as a DGM

Given a five-word sequence,  $[w_1, w_2, w_3, w_4, w_5]$ , how could we represent the implied probability distributions of an RNN-LM as a directed graphical model?



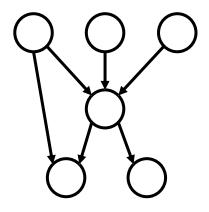
### **UNDIRECTED GRAPHICAL MODELS**

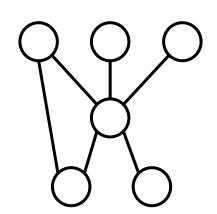
# Three Types of Graphical Models

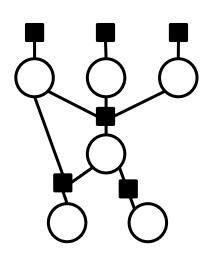
Directed Graphical Model

Undirected Graphical Model

Factor Graph







Representation of both directed and undirected graphical models

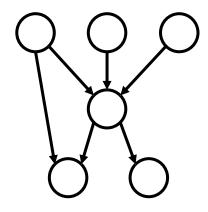
### **FACTOR GRAPHS**

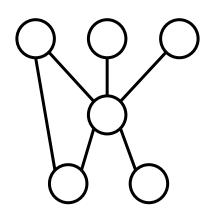
# Three Types of Graphical Models

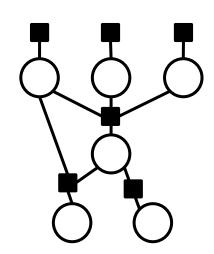
Directed Graphical Model

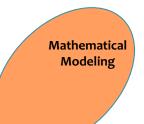
Undirected Graphical Model

Factor Graph





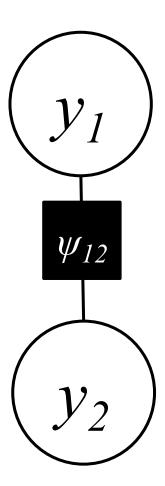


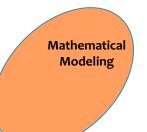


### **Factor Graph**

(bipartite graph)

- variables (circles)
- factors (squares)

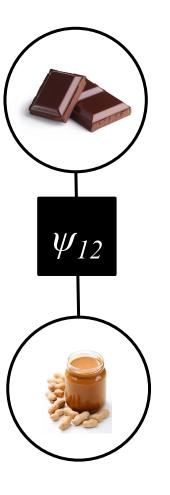




### **Factor Graph**

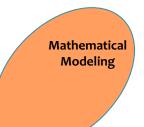
(bipartite graph)

- variables (circles)
- factors (squares)



Each random variable can be assigned a value

The collection of values for all the random variables is called an assignment.

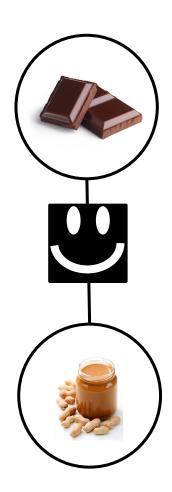


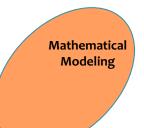
### **Factor Graph**

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions about the assignments of their neighboring variables



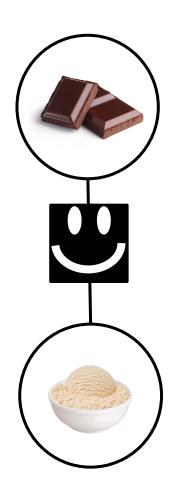


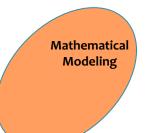
### **Factor Graph**

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions about the assignments of their neighboring variables



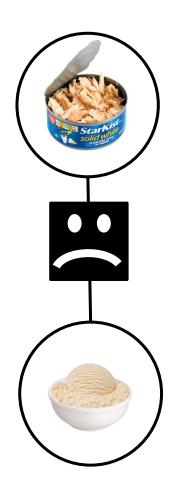


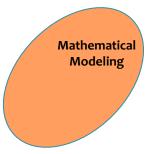
### **Factor Graph**

(bipartite graph)

- variables (circles)
- factors (squares)

Factors have local opinions about the assignments of their neighboring variables





P(tuna, ice cream) = ?

| chocolate     | 0.1 |
|---------------|-----|
| peanut butter | 5   |
| ice cream     | 1   |
| tuna          | 6   |
|               |     |

chocolate

peanut butter

ice cream

tuna

4

8

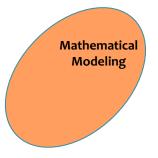
3





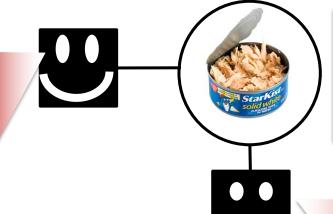
Those opinions are expressed through potential tables

|               | chocolate | peanut butter | lce cream | tuna |  |
|---------------|-----------|---------------|-----------|------|--|
| chocolate     | 2         | 9             | 7         | 0.1  |  |
| peanut butter | 4         | 2             | 3         | 0.2  |  |
| ice cream     | 7         | 3             | 2         | 0.1  |  |
| tuna          | 0.1       | 0.2           | 0.1       | 2    |  |
|               |           |               |           |      |  |



 $P(\text{tuna, ice cream}) = \frac{1}{Z} (6 * 7 * 0.1)$ 

| chocolate     | 0.1 |  |
|---------------|-----|--|
| peanut butter | 5   |  |
| ice cream     | 1   |  |
| tuna          | 6   |  |
| •••           |     |  |



Uh-oh! The probabilities of the various assignments sum up to Z > 1.

So divide them all by Z.

|               | ch  | pear | ICe |     |  |
|---------------|-----|------|-----|-----|--|
| chocolate     | 2   | 9    | 7   | 0.1 |  |
| peanut butter | 4   | 2    | 3   | 0.2 |  |
| ice cream     | 7   | 3    | 2   | 0.1 |  |
| tuna          | 0.1 | 0.2  | 0.1 | 2   |  |
|               |     |      |     |     |  |

tuna

| chocolate     | 4 |
|---------------|---|
| peanut butter | 8 |
| ice cream     | 7 |
| tuna          | 3 |
| •••           |   |

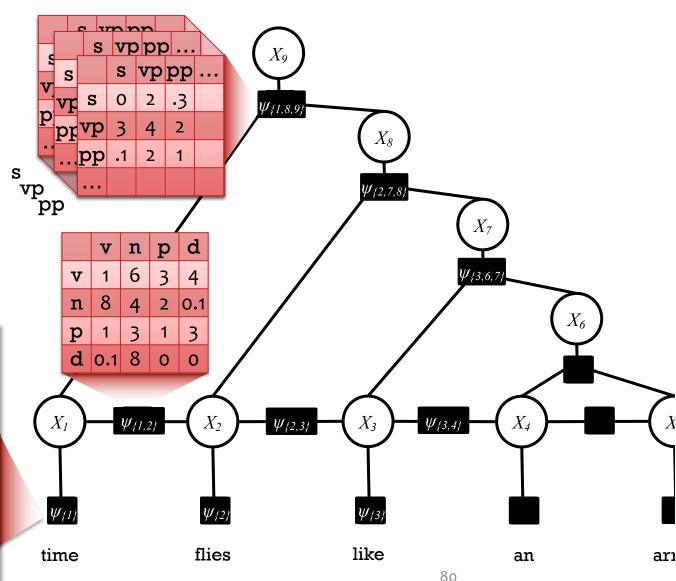
The combined potential tables of all factors defines the probability of an assignment

### **Factors are Tensors**

- Factors must contain non-negative values -this ensures we have a valid probability distribution
- We also sometimes refer to factors as potential functions or potentials (like UGMs)

### **Joint Distribution**

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$



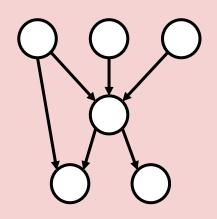
# Locally Normalized vs.

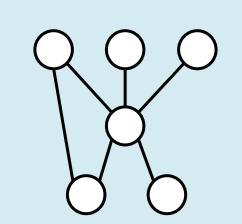
# vs. Globally Normalized

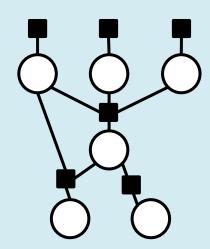
Directed Graphical Model

Undirected Graphical Model

Factor Graph







$$P(X_1, \dots, X_T) = \prod_{t=1}^T P(X_t \mid \mathsf{parents}(X_t))$$

$$p(\boldsymbol{x}) = \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(\boldsymbol{x}_{\alpha})$$

### Inference

#### Three Tasks:

### Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

### 2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{ heta}) = \sum_{oldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(oldsymbol{x}_C)$$

# 3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

### **UNSUPERVISED LEARNING**

#### **Assumptions:**

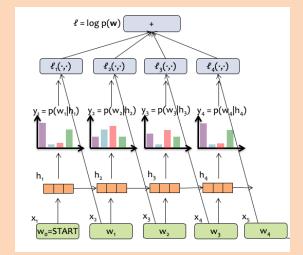
- 1. our data comes from some distribution  $p*(x_0)$
- we choose a distribution  $p_{\theta}(\mathbf{x}_{0})$  for which sampling  $\mathbf{x}_{0} \sim p_{\theta}(\mathbf{x}_{0})$  is tractable

**Goal**: learn  $\theta$  s.t.  $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$ 

#### **Assumptions:**

- 1. our data comes from some distribution  $p*(x_0)$
- 2. we choose a distribution  $p_{\theta}(\mathbf{x}_{o})$  for which sampling  $\mathbf{x}_{o} \sim p_{\theta}(\mathbf{x}_{o})$  is tractable

**Goal**: learn  $\theta$  s.t.  $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$ 



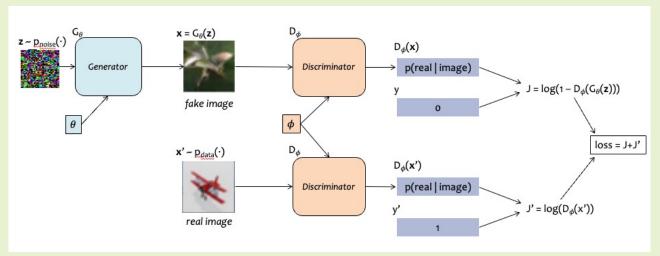
#### **Example:** autoregressive LMs

- true  $p^*(x_0)$  is the (human) process that produced text on the web
- choose  $p_{\theta}(\mathbf{x}_0)$  to be an autoregressive language model
  - autoregressive structure means that  $p(\mathbf{x}_t \mid \mathbf{x}_1, ..., \mathbf{x}_{t-1}) \sim \text{Categorical}(.)$  and ancestral sampling is exact/efficient
- learn by finding  $\theta \approx \operatorname{argmax}_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$  using gradient based updates on  $\nabla_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$

#### **Assumptions:**

- 1. our data comes from some distribution  $p*(x_0)$
- we choose a distribution  $p_{\theta}(\mathbf{x}_{0})$  for which sampling  $\mathbf{x}_{0} \sim p_{\theta}(\mathbf{x}_{0})$  is tractable

**Goal**: learn  $\theta$  s.t.  $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$ 



#### Example: GANs

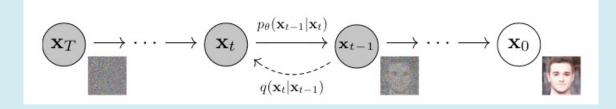
- true p\*(x<sub>o</sub>) is distribution over photos taken and posted to Flikr
- choose  $p_{\theta}(\mathbf{x}_{o})$  to be an expressive model (e.g. noise fed into inverted CNN) that can generate images
  - sampling is typically easy:  $\mathbf{z} \sim N(\mathbf{0}, \mathbf{I})$  and  $\mathbf{x}_0 = f_{\theta}(\mathbf{z})$
- learn by finding  $\theta \approx \operatorname{argmax}_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$ ?
  - No! Because we can't even compute  $log(p_{\theta}(\mathbf{x}_{o}))$  or its gradient
  - Why not? Because the integral is intractable even for a simple 1-hidden layer neural network with nonlinear activation

$$p_{ heta}(\mathbf{x}_0) = \int_z p_{ heta}(\mathbf{x}_0 \mid z) \, p(z) \, dz$$

#### **Assumptions:**

- 1. our data comes from some distribution  $p^*(x_0)$
- 2. we choose a distribution  $p_{\theta}(\mathbf{x}_{o})$  for which sampling  $\mathbf{x}_{o} \sim p_{\theta}(\mathbf{x}_{o})$  is tractable

**Goal**: learn  $\theta$  s.t.  $p_{\theta}(\mathbf{x}_{o}) \approx p^{*}(\mathbf{x}_{o})$ 



#### **Example:** VAEs / Diffusion Models

- true p\*(x<sub>o</sub>) is distribution over photos taken and posted to Flikr
- choose  $p_{\theta}(\mathbf{x}_{o})$  to be an expressive model (e.g. noise fed into inverted CNN) that can generate images
  - sampling is will be easy
- learn by finding  $\theta \approx \operatorname{argmax}_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$ ?
  - Sort of! We can't compute the gradient  $\nabla_{\theta} \log(p_{\theta}(\mathbf{x}_{o}))$
  - So we instead optimize a variational lower bound (more on that later)

### Latent Variable Models

- For GANs and VAEs, we assume that there are (unknown) latent variables which give rise to our observations
- The vector z are those latent variables
- After learning a GAN or VAE, we can interpolate between images in latent z space

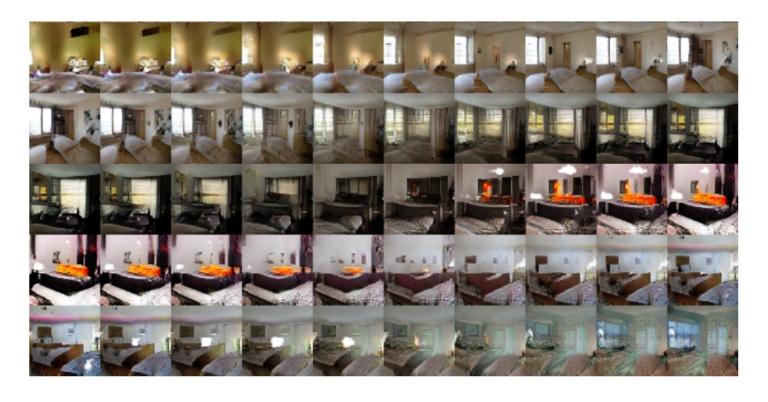


Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a TV slowly being transformed into a window.

# DIFFUSION MODELS AND VARIATIONAL AUTOENCODERS (VAES)

### **Diffusion Models**

- Next we will consider (1) diffusion models and (2) variational autoencoders (VAEs)
  - Although VAEs came first, we're going to dive into diffusion models since they will receive more of our attention
- The steps in defining these models is roughly:
  - Define a probability distribution involving Gaussian noise
  - Use a variational lower bound as an objective function
  - Learn the parameters of the probability distribution by optimizing the objective function
- So what is a variational lower bound?

Diffusion Models

 Next we will consider (1) diffusion mo variational autoencoders (VAEs)

- Although VAEs came first, we're going to models since they will receive more of or
- The steps in defining these models is
  - Define a probability distribution involving
  - Use a variational lower bound as an obje
  - Learn the parameters of the probability
     the objective function
- So what is a variational lower bound?

The standard presentation of diffusion models requires an understanding of variational inference. (we'll do that next time)

Next time, we'll do an alternate presentation without variational inference!